Purpose: The purpose was to develop an approach to predict product quality considering current customers' expectations. Design/methodology/approach: The approach includes integrated techniques, i.e.: SMART(-ER) method, a questionnaire with the Likert scale, brainstorming (B&M), WSM method, and Naïve Bayes Classifier. This approach refers to obtaining customers' expectations for satisfaction from the current quality of products and the importance of these criteria. Based on the satisfaction of customers, the quality of the product was estimated and classified. Then, the quality of the product was predicted for current customers. Findings: It was shown that it is possible to predict product quality based on current customer expectations, and so based on the current existing product. Research limitations/implications: The proposed approach does not include the possibilities of determining the expected quality of the product. The approach focuses on predicting customers' satisfaction with the current quality of the product. Therefore, if there is a need for improvement actions, further analyzes should be carried out to determine which criteria should be modified and how. Practical implications: The presented approach can be used for any product. Therefore, it is a useful tool for any kind of organization, which strives to meet customer satisfaction. Despite the possibility to predict the quality of the product, the proposed approach can indicate at an early stage to the organization that it is necessary to make improvement actions. Social implications: It is possible to reduce the waste of resources by predicting that improvement actions are necessary. Moreover, the approach supports an entity (e.g., expert, enterprise, interested parties) in predicting current customers' satisfaction. Originality/value: Originality is predicting product quality based on current customers' expectations. A new combination of quality management techniques, decision support, and machine learning was implemented.
Predictive control of MIMO processes is a challenging problem which requires the specification of a large number of tuning parameters (the prediction horizon, the control horizon and the cost weighting factor). In this context, the present paper compares two strategies to design a supervisor of the Multivariable Generalized Predictive Controller (MGPC), based on multiobjective optimization. Thus, the purpose of this work is the automatic adjustment of the MGPC synthesis by simultaneously minimizing a set of closed loop performances (the overshoot and the settling time for each output of the MIMO system). First, we adopt the Weighted Sum Method (WSM), which is an aggregative method combined with a Genetic Algorithm (GA) used to minimize a single criterion generated by the WSM. Second, we use the Non- Dominated Sorting Genetic Algorithm II (NSGA-II) as a Pareto method and we compare the results of both the methods. The performance of the two strategies in the adjustment of multivariable predictive control is illustrated by a simulation example. The simulation results confirm that a multiobjective, Pareto-based GA search yields a better performance than a single objective GA.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W artykule zaproponowano ogólny algorytm zintegrowanego projektowania systemu utrzymania komfortu klimatycznego w budynkach o niskim zużyciu energii. Dla oceny dopuszczalnych technicznie rozwiązań systemów utrzymania komfortu klimatycznego wprowadzono zbiór kryteriów opisujących zdefiniowany problem decyzyjny. Jako narzędzie wspomagające wybór rozwiązania kompromisowego zaproponowano jedną z metod wielokryterialnego wspomagania podejmowania decyzji – metodę sumy ważonej.
EN
This paper presents general algorithm of integrated design of indoor climate comfort creation system for low energy buildings. In order to rank technically acceptable solutions the set of evaluation criteria has been described. As the decision tool one of the methods of multicriteria decision aid – weighted sum method, has been used.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.