Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 201

Liczba wyników na stronie
first rewind previous Strona / 11 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  metoda analityczna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 11 next fast forward last
PL
1,4-Dioksan to lotna ciecz o słabym zapachu, która dobrze rozpuszcza się w wodzie i większości rozpuszczalników organicznych. Jako łatwopalna ciecz stwarza zagrożenie pożarowe. 1,4-Dioksan jest niestabilny w podwyższonej temperaturze i ciśnieniu i może tworzyć mieszaniny wybuchowe. Substancja jest stosowana głównie jako rozpuszczalnik w produkcji innych substancji chemicznych, jako rozpuszczalnik do farb drukarskich, powłok i klejów oraz jako odczynnik laboratoryjny. Zgodnie z rozporządzeniem Parlamentu Europejskiego i Rady (WE 1272/2008) 1,4-dioksan został sklasyfikowany jako substancja rakotwórcza, łatwopalna, drażniąca na oczy oraz drażniąca na układ oddechowy. W artykule przedstawiono metodę oznaczania 1,4-dioksanu w powietrzu na stanowiskach pracy, znowelizowaną ze względu na proponowaną zmianę wartości najwyższego dopuszczalnego stężenia (NDS) dla tej substancji. Metoda polega na adsorpcji 1,4-dioksanu na węglu aktywnym, desorpcji mieszaniną propan-2-olu i disiarczku węgla oraz analizie chromatograficznej (GC-FID) otrzymanego roztworu. Metoda umożliwia oznaczanie 1,4-dioksanu w zakresie stężeń 2,2 ÷ 44 mg/m3 (gdy NDS 22 mg/m3) lub 0,73 ÷ 14,6 mg/m3 (gdy NDS 7,3 mg/m3), tj. 1/10 ÷ 2 proponowanych wartości najwyższego dopuszczalnego stężenia. Metoda została poddana walidacji zgodnie z normą PN-EN 482. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
1,4-Dioxane is a volatile liquid with a weak odor that dissolves well in water and most organic solvents. As a flammable liquid it poses a fire hazard. 1,4-Dioxane is unstable at increased temperature and pressure and can form explosive mixtures. It is mainly used as a solvent in the production of other chemicals, as a solvent for printing inks, coatings and adhesives, and as a laboratory reagent. According to the Regulation of the European Parliament and the Council (WE 1272/2008), 1,4-dioxane is classified as a carcinogen, flammable, eye and respiratory irritant. This article presents a method for the determination of 1,4-dioxane in workplace air, revised due to a proposed change in the maximum allowable concentration (MAC) value for this substance. The method involves adsorption of 1,4-dioxane on activated carbon, desorption with a mixture of propan-2-ol and carbon disulfide, and chromatographic analysis (GC-FID) of the resulting solution. The method allows for the determination of 1,4-dioxane in the concentration range of 2.2 to 44 mg/m3 (MAC 22 mg/m3 ) or 0.73 to 14.6 mg/m3 (MAC 7.3 mg/m3 ), i.e. 1/10 to 2 of the proposed value of the maximum allowable concentration. The method has been validated in accordance with PN-EN 482. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
2
Content available remote Wybrane aspekty projektowania proekologicznych budynków na bazie CLT
PL
W artykule zaprezentowano aspekty dotyczące projektowania budynków proekologicznych i scharakteryzowano kryteria projektowania. Problem badawczy obejmuje określenie wybranych aspektów projektowania. Metoda badań polega na analizie uwarunkowań proekologicznych w projektowaniu architektoniczno-budowlanym oraz zastosowania materiałów i elementów konstrukcyjnych CLT. W artykule zaprezentowano metody analogii ścinania i Gamma jako wybrane przykłady rozwiązywania problemów konstrukcyjno-materiałowych.
EN
This paper presents aspects of designing proecological buildings and the design criteria were characterized. The research problem includes determining selected aspects of design. The research method involves the analysis of proecological conditions in architectural and construction design and the use of CLT materials and construction elements. This paper presents shear analogy methods and Gamma methods as selected examples of solving construction and material problems.
PL
W Polsce dotychczas nie było konieczności oznaczania stężenia węgla elementarnego (EC) w celu oceny narażenia inhalacyjnego pracowników, ponieważ polska wartość NDS jest ustalona dla frakcji respirabilnej spalin silników Diesla. Nie ma również żadnych danych dotyczących poziomu stężeń EC w powietrzu stanowisk pracy, a narażenie na ten niebezpieczny dla zdrowia czynnik dotyczy bardzo dużej populacji pracowników zatrudnionych m.in. w podziemnych wyrobiskach górniczych, jak również strażaków, kierowców tirów, autobusów, a także pracowników stacji obsługi samochodów (Szymańska i in. 2019). Wprowadzenie do Dyrektywy Parlamentu Europejskiego i Rady (UE) 2019/130 z dnia 16 stycznia 2019 r. wartości BOELV 0,05 mg/m³ dla spalin silników wysokoprężnych Diesla w środowisku pracy, mierzonych jako węgiel elementarny, wymaga dostosowania przepisów krajowych do tej wartości i opracowania metody oznaczania węgla elementarnego. Celem prac badawczych było opracowanie metody oznaczania węgla elementarnego w powietrzu na stanowiskach pracy na poziomie 0,005 mg/m³ . W wyniku badań opracowano metodę oznaczania węgla elementarnego w powietrzu na stanowiskach pracy z zastosowaniem termo-optycznego analizatora z detektorem płomieniowo-jonizacyjnym. Metoda polega na przepuszczeniu badanego powietrza zawierającego spaliny silnika Diesla przez filtr kwarcowy umieszczony w kasecie i analizie w odpowiednim programie temperaturowym. Uzyskano oznaczalność EC 0,0041 mg/m³ . Całkowita precyzja badania wynosiła 5,3%, względna niepewność całkowita 11,6%, a niepewność rozszerzona 23,2%. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
In Poland, until now it has not been necessary to determine the elemental carbon (EC) concentrations because Polish NDS values are set for a respirable fraction of diesel exhausts. No data on the level of EC concentrations in workplace air are available although the exposure to this hazardous factor concerns a large population of workers. The exposure concerns people working in underground mines and tunneling, firefighters, lorry and bus drivers, and car service station workers. The introduction of 0.05 mg/m³ BOELV value for diesel exhaust gases in working environment, measured as elemental carbon into the Directive 2019/130 of the European Parliament, requires the adjustment of the national legislation. The aim of the study was to develop a method for determining EC in workplace air at the level of 0.005 mg/m³ . As a result, a method for determination EC in workplace air using a thermo-optical analyzer with a flame ionization detector was developed. The method consists in passing the tested air containing diesel exhaust gases through a quartz filter placed in a cassette and its analysis in an appropriate temperature program. An EC determination of 0.0041 mg/m³ was obtained. The total accuracy of the method was 5.3%, a relative total uncertainty was 11.6% and an expanded uncertainty was 23.2%. This article discusses problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Kwas nitrylotrioctowy (NTA), podobnie jak jego mono-, di- oraz trisodowe sole, w temperaturze pokojowej stanowi bezwonne, białe, krystaliczne ciało stałe. NTA w przeciwieństwie do swoich soli sodowych bardzo słabo rozpuszcza się w wodzie i jest nierozpuszczalny w większości rozpuszczalników organicznych. Stosuje się go jako środek zapobiegający osadzaniu kamienia kotłowego, jako środek kompleksujący jony metali podczas barwienia tkanin lub jako środek zapobiegający rozkładowi nadtlenków i wodorosiarczków w przemyśle papierniczym, jak również jako składnik detergentów i płynów czyszczących. NTA i jego sole sodowe zostały uznane za substancje potencjalnie rakotwórcze. Celem badań było opracowanie i walidacja metody oznaczania NTA i jego soli w środowisku pracy. Opracowana metoda oznaczania NTA i jego soli polega na zatrzymaniu pyłów lub aerozolu na filtrach z włókna szklanego, ekstrakcji badanych związków NaOH o stężeniu 0,2 mol/l i oznaczeniu NTA techniką wysokosprawnej chromatografii cieczowej z detekcją spektrofotometryczną (HPLC-UV-VIS). Ta metoda jest liniowa w zakresie stężeń 0,0135 ÷ 0,54 μg/ml, co odpowiada zakresowi 0,15 ÷ 6,0 mg/m3 dla próbki powietrza o objętości 180 l. Opracowana metoda analityczna umożliwia oznaczanie NTA i jego soli w powietrzu na stanowiskach pracy w obecności innych związków chelatujących, charakteryzuje się dobrą precyzją i dokładnością oraz spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Metoda została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia dotyczące zdrowia oraz bezpieczeństwa i higieny środowiska pracy, będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Nitrilotriacetic acid and its mono-, di- and trisodium salts at room temperature, are white crystalline odorless solids. NTA is poorly (in opposite to its sodium salts) soluble in water. It is soluble with ethanol, however insoluble in most of organic solvents. NTA is used as an anti-limescale agent, as a chelating agent in fabric dyeing and agent preventing of decomposition of peroxides and hydrosulphides in paper processing. It is also used as a component of some detergents and cleaning fluids. NTA and its sodium salts are suspected to be carcinogenic to humans. The aim of the work was to develop and validate method of determination of NTA and its salts in workplace air. The developed method is based on an arrest of dusts or aerosols of these substances on glass fiber filters, extraction of the filters with a 0.2 M NaOH and analysis of the resulted solution by means of HPLC-UV-VIS technique. The developed method is linear in the concentration range of 0.0135-0.54 µg/ml, which corresponds to the range of 0.15–6.0 mg/m3 for a 180-L air sample. The analytical method described in this paper enables determination of NTA and its salts in air at workplaces in the presence of other chelating agents. The method is precise, accurate and it meets the criteria for procedure for determination of chemical agents listed in Standard No. PN-EN 482. Developed method of determination of NTA at workplaces has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
5
Content available remote Ftalan bis(2-etyloheksylu). Metoda oznaczania w powietrzu na stanowiskach pracy
PL
Ftalan bis(2-etyloheksylu), znany jako DEHP, to substancja działająca szkodliwie na rozrodczość kategorii 1B, umieszczona na liście substancji zidentyfikowanych jako zaburzające gospodarkę hormonalną. Celem przeprowadzonych prac badawczych było opracowanie znowelizowanej metody oznaczania ftalanu bis(2-etyloheksylu), która umożliwi oznaczanie jego stężeń na poziomie 0,08 mg/m3. Metoda polega na zatrzymaniu zawartego w powietrzu ftalanu bis(2-etyloheksylu) na próbnik składający się z rurki szklanej z sorbentem XAD-2 i filtra z włókna szklanego, ekstrakcji mieszaniną aceton/dichlorometan i analizie chromatograficznej otrzymanego roztworu. Badania wykonano z zastosowaniem chromatografii gazowej ze spektrometrią mas (kolumna RTX-5Sil MS). Walidację metody przeprowadzono zgodnie z wymaganiami zawartymi w normie europejskiej PN-EN 482. Znowelizowana metoda umożliwia oznaczanie związku w powietrzu środowiska pracy w zakresie stężeń 0,08 ÷ 1,6 mg/m3. Metoda oznaczania DEHP została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Bis(2-ethylhexyl) phthalate, also known as DEHP, is a reproductive toxicant of hazard category 1B included in the list of substances identified as endocrine disruptors. The aim of the research work was to develop an updated method for the determination of DEHP that will enable its concentrations to be determined at 0.08 mg/m3. The method involves trapping the aerosol of bis(2-ethylhexyl) phthalate contained in the air onto a sampler - a glass tube with XAD-2 sorbent and a glass fiber filter, extraction with an acetone/dichloromethane mixture and chromatographic analysis of the resulting solution. The study was performed with the use of gas chromatography with a mass spectrometer (RTX5Sil MS column). Validation of the method was carried out in accordance with the requirements of the European standard PN-EN 482. The updated method allows the determination of the compound in the air of the working environment in the concentration range from 0.08 mg/m3 to 1.6 mg/m3 . The method for the determination of DEHP is presented in the form of an analytical procedure, which is included in Appendix. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Fosforan trifenylu (FTF) jest bezbarwnym ciałem stałym o delikatnym zapachu przypominającym fenol. Związek jest stosowany jako środek zmniejszający palność przy produkcji elementów elektrycznych i samochodowych oraz jako niepalny plastyfikator używany do produkcji kliszy fotograficznej. Ponadto jest składnikiem płynów hydraulicznych i olejów smarowych, pracujących w warunkach ekstremalnych ciśnień. Fosforan trifenylu jest obecnie stosowany jako zamiennik bisfenolu A w opakowaniach z tworzyw sztucznych i innych, znalazł również zastosowanie w kosmetykach. Celem prac badawczych było opracowanie i walidacja metody oznaczania fosforanu trifenylu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania fosforanu trifenylu polega na adsorpcji par tej substancji na żywicy XAD-2, desorpcji przy użyciu mieszaniny dichlorometan−acetonitryl (1: 1) i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w niepolarną kolumnę kapilarną HP-5MS (o długości 30 m, średnicy 0,25 mm i grubości filmu fazy stacjonarnej 0,25 µm). Wskazania spektrometru mas pracującego w trybie SIM w funkcji stężenia fosforanu trifenylu w badanym zakresie stężeń (10,0 ÷ 200,0 µg/ml) mają charakter liniowy. Opracowana metoda analityczna umożliwia oznaczanie fosforanu trifenylu w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością, spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania fosforanu trifenylu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Triphenyl phosphate (TPP) is a colorless solid with a slight phenol-like odor. It is used as a flame retardant in the production of electrical and automotive components and as a non-flammable plasticizer used in the production of photographic film. In addition, it is a component of hydraulic fluids and lubricating oils operating under extreme pressure. TPP is currently used as a substitute for Bisphenol A in plastic and other packaging, and has also been used in cosmetics. The aim of the research was to develop and validate method of determination of triphenyl phosphate in workplace air. The developed method of TPP determination consists in adsorption of the vapors of this substance on XAD-2 resin, extraction with a dichloromethane-acetonitrile mixture and chromatographic analysis of the solution obtained in this way. The study was performed by gas chromatograph coupled with mass spectrometer (GC-MS), equipped with a non-polar HP-5MS capillary column (length 30 m, diameter 0.25 mm and the film thickness of the stationary phase 0.25 µm). Indications of the mass spectrometer operating in SIM mode as a function of TPP concentration in the tested concentration range (10.0–200.0 µg/ml) are linear. The analytical method described in this paper enables determination of TPP in air at workplaces in the presence of comorbid substances. The method is precise, accurate and it meets the criteria for procedure for determination of chemical agents listed in Standard No. PN-EN 482. Developed method of determination of triphenyl phosphate at workplaces has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Enfluran należy do wziewnych środków ogólnie znieczulających i jest izomerem położeniowym innego anestetyku – izofluranu. W temperaturze pokojowej jest bezbarwną, przezroczystą cieczą o słabym, słodkim zapachu. W przypadku narażenia zawodowego enfluran jest często stosowany w mieszaninie z innymi anestetykami wziewnym, dlatego objawy trudno przypisać do działania jednej substancji. U pracowników narażonych na mieszaninę anestetyków odnotowano takie objawy, jak: podrażnienie oczu i skóry, depresję ośrodkowego układu nerwowego, zaburzenia ze strony układu krążenia, uszkodzenia wątroby i nerek. Celem prac badawczych było opracowanie i walidacja metody oznaczania enfluranu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania enfluranu polega na adsorpcji par tej substancji na węglu aktywnym typu „Petroleum Charcoal”, ekstrakcji toluenem i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w polarną kolumnę kapilarną ZB WAXplus (o długości 60 m, średnicy 0,25 mm i grubości filmu fazy stacjonarnej 0,5 µm). Wskazania spektrometru mas pracującego w trybie SIM w funkcji stężenia enfluranu w badanym zakresie stężeń (10,0 ÷ 400,0 µg/ml) mają charakter liniowy. Opracowana metoda analityczna umożliwia oznaczanie enfluranu w powietrzu na stanowiskach pracy w obecności innych anestetyków wziewnych. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania enfluranu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii.
EN
Enflurane is an inhaled general anaesthetic and is a positional isomer of another anaesthetic, namely isoflurane. At room temperature, it is a colourless, transparent liquid with a faint, sweet odour. In occupational exposure, enflurane is often used in a mixture with other inhalation anaesthetics, so symptoms are difficult to attribute to the effects of any one substance. Symptoms such as eye and skin irritation, central nervous system depression, cardiovascular disorders, and liver and kidney damage have been reported in workers exposed to anaesthetic mixtures. The aim of this research work was to develop and validate a method for the determination of enflurane in air at workplaces. This enflurane determination method is based on the adsorption of substance vapours on the ‘Petroleum Charcoal’ activated carbon, extraction with toluene and chromatographic analysis of the resulting solution. The tests used a gas chromatograph coupled with a mass spectrometer (GC-MS) fitted with a capillary polar column ZB-WAXplus (60 m length, 0.25 mm diameter and 0.5 µm stationary phase film thickness). The SIM mass spectrometer readings as a function of enflurane concentration within the tested concentration range (10.0-400 µg/ml) are linear. The analytical method developed enables the determination of enflurane in air at workplaces in the presence of other inhalation anaesthetics. The method is precise and accurate and it meets the requirements of PN-EN 482 for the determination of chemicals. The method developed for the determination of enflurane in air at workplaces has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering studies.
8
PL
2,6-Di-tert-butylo-4-metylofenol (BHT) to organiczny związek należący do grupy fenoli. Substancja jest bezwonnym, białym lub żółtawobiałym, krystalicznym proszkiem. Jest przeciwutleniaczem stosowanym m.in. podczas produkcji żywności, pasz dla zwierząt, olejów zwierzęcych i roślinnych, farb, mydeł, produktów naftowych, kauczuków syntetycznych oraz tworzyw sztucznych. Narażenie pracowników na BHT może wystąpić podczas produkcji, przetwarzania i stosowania substancji chemicznej. W 2021 r. Zespół Ekspertów ds. Czynników Chemicznych Międzyresortowej Komisji ds. NDS i NDN zaproponował przyjęcie dla BHT wartości NDS na poziomie 10 mg/m3. Celem badań było opracowanie metody oznaczania BHT w powietrzu na stanowiskach pracy do oceny narażenia zawodowego w zakresie 1/10 ÷ 2 zaproponowanej wartości NDS. Metoda polega na: zatrzymaniu 2,6-di-tert-butylo-4-metylofenolu obecnego w badanym powietrzu na filtrze z włókna szklanego i sorbencie XAD-7, wymyciu zatrzymanej substancji roztworem N,N-dimetyloformamidu w metanolu i analizie tak uzyskanego roztworu z zastosowaniem chromatografii gazowej z detekcją płomieniowo-jonizacyjną. Najmniejsze stężenie BHT, jakie można oznaczyć w warunkach pobierania próbek powietrza i wykonania oznaczania, wynosi 0,96 mg/m3 (dla próbki powietrza o objętości 60 litrów). Metoda oznaczania BHT została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
2,6-Di-tert-butyl-4-methylphenol (BHT) is an organic compound belonging to the phenol group and is an odorless, white or yellowish-white crystalline powder. BHT is an antioxidant used in the production of food, animal feed, animal and vegetable oils, paints, petroleum product soaps, synthetic rubbers and plastics, among others. Worker exposure to BHT can occur during the production, processing and use of the chemical. In 2021 the Group of Experts for Chemical Agents of the Interdepartmental Commission for MAC and MAI proposed MAC value of 10 mg/m3 for BHT. The aim of this study was to develop a method for determining BHT in workplace air for occupational exposure assessment within 1/10 ÷ 2 of the proposed MAC value. The method is based on retaining the BHT present in the air on a glass fiber filter and XAD-7 sorbent, leaching the retained substance with a solution of N,N-dimethylformamide in methanol and analyzing the solution by the use of gas chromatography with flame-ionization detection. The smallest concentration of BHT that can be determined under the conditions of air sampling and performing the determination is 0.96 mg/m3 (for an air sample of 60 liters). The method for the determination of BHT is presented in the form of an analytical procedure, which is included in the appendix. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
N-Metyloformamid (NMF) jest bezbarwną cieczą o słabym zapachu amoniaku i gęstości względnej zbliżonej do gęstości wody. NMF jest stosowany w syntezie środków owadobójczych, w produkcji izocyjanianu metylu oraz do ekstrakcji węglowodorów aromatycznych w procesie rafinacji ropy naftowej. Najistotniejszym negatywnym skutkiem zdrowotnym narażenia na NMF jest jego działanie hepatotoksyczne. Związek ten podejrzewany jest również o działanie embriotoksyczne i teratogenne. Celem prac badawczych było opracowanie i walidacja metody oznaczania NMF w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania NMF polega na adsorpcji par tej substancji na żelu krzemionkowym, ekstrakcji przy użyciu 3-procentowego roztworu metanolu oraz analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf cieczowy z detektorem spektrofotometrycznym. Metoda jest liniowa (r = 0,9994) w zakresie stężeń 1,65 ÷ 33 µg/ml, co odpowiada zakresowi 0,33 ÷ 6,6 mg/m³ dla próbki powietrza 10 l. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania NMF w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej zamieszczonej w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
N-Methylformamide (NMF) is a colorless liquid with slight ammonia like odor and the specific gravity similar to water. NMF is chemical compound used in production of insecticides, methyl isocyanate and for extraction of aromatic hydrocarbons in an oil refining process. The most important adverse effect of NMF exposure is its hepatotoxicity. NMF is also suspected to be embriotoxic and teratogenic agent. The aim of this study was to develop and validate method for determining NMF in workplace air. The developed method is based on adsorption of NMF vapors on silica gel, extraction with a solution of 3% methanol and chromatographic analysis of the obtained solution. The study was performed with high performance liquid chromatography with spectrophotometric detection. The developed method is linear (r = 0.9994) in the concentration range of 1.65–33.0 µg/ml, which corresponds to the range of 0.33–66 mg/m³ for a 10-L air sample. The analytical method described in this paper is precise, accurate and it meets the criteria for procedure for determination of chemical agents listed in Standard No. PN-EN 482. The developed method of determination of NMF in workplace air has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Kadm i jego związki nieorganiczne powodują raka płuc. Wykazano także zależność między narażeniem ludzi na kadm i jego związki a rakiem nerek i prostaty. Szacuje się, że na kadm i jego związki jest narażonych kilka tysięcy osób zatrudnionych w hutnictwie, przy produkcji akumulatorów, stopów, pigmentów, tworzyw sztucznych oraz przy spawaniu. W Polsce wartość najwyższego dopuszczalnego stężenia (NDS) dla kadmu (CAS: 7440-43-9) i jego związków nieorganicznych została zmieniona. Wartość NDS mająca obowiązywać od 2027 roku odnosi się do frakcji wdychalnej i wynosi 0,001 mg/m³ . W okresie przejściowym od lipca 2021 do 2027 roku przyjęto wartość NDS wynoszącą 0,004 mg/m³ . Opracowano metodę oznaczania kadmu i jego nieorganicznych związków umożliwiającą oznaczanie tej substancji w powietrzu na stanowiskach pracy z wykorzystaniem metody absorpcyjnej spektrometrii atomowej z elektrotermiczną atomizacją (ET-AAS), zgodną z wymaganiami zawartymi w normie europejskiej PN-EN 482. Kadm oznaczano w zakresie stężeń: 0,10 ÷ 1,00 i 0,50 ÷ 5,00 µg/l. Uzyskano oznaczalność metody w powietrzu na stanowiskach pracy wynoszącą 0,0001 mg/m³ oraz możliwość oznaczania tej substancji w zakresie stężeń 0,00010 ÷ 0,0104 mg/m³ dla próbki powietrza 480 l. Przedstawiona metoda umożliwia oznaczanie kadmu i jego związków nieorganicznych w powietrzu na stanowiskach pracy w wymaganym zakresie 0,1 ÷ 2 nowych wartości NDS. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Cadmium and its inorganic compounds cause lung cancer. A relationship between human exposure to cadmium and its inorganic compounds and renal and prostate cancer has also been demonstrated. It is estimated that several thousand people employed in metal production are exposed to cadmium and its inorganic compounds; in metallurgy, in the production batteries, alloys, pigments, plastics and welders. The values of the maximum allowable concentration (NDS) for cadmium [7440-43-9] and its inorganic compounds in Poland were changed. The NDS value, which is meant to become obligatory from 2027, refers to the inhalable fraction and amounts to 0.001 mg/m³ . In the transition period from July 2021 to 2027, the NDS value was set at 0.004 mg/m³ . A method for the determination of cadmium and its inorganic compounds was developed, enabling the determination of this substance in the air at workplaces with the use of the atomic absorption spectrometry with electrothermal atomization (ET AAS), in accordance with the requirements of the European standard PN-EN 482. Cadmium was determined in the concentration range: 0.10–1.00 µg/l and 0.50–5.00 µg/l. The method’s determination in the air at workplaces of 0.0001 mg/m³ was obtained for, as well as the possibility of determining this substance in the concentration range of 0.00010–0.0104 mg/m³ for a 480-l air sample. The presented method enables the determination of this substance in the air at workplaces in the required range of 0.1–2 new NDS values. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
2-Metoksypropan-1-ol (2M1P) jest bezbarwną, palną cieczą o działaniu drażniącym. Jest to I-rzędowy alkohol powstający jako produkt uboczny przy produkcji eteru monometylowego glikolu propylenowego (1-metoksypropan-2-olu). W związku z tym narażenie na 2M1P zawsze wiąże się z narażeniem na 1-metoksypropan-2-ol, który jest stosowany jako rozpuszczalnik farb, lakierów, barwników itp. oraz jako składnik preparatów czyszczących i półprodukt do syntezy chemicznej. W środowisku pracy pracownicy mogą być narażeni na działanie 2-metoksypropan-1-olu drogą inhalacyjną i dermalną. Celem prac badawczych było opracowanie i walidacja metody oznaczania 2-metoksypropan-1-olu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania 2M1P polega na adsorpcji par tej substancji na węglu z łupin orzecha kokosowego, ekstrakcji przy użyciu roztworu metanolu w disiarczku węgla i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w polarną kolumnę kapilarną ZB-WAXplus (o długości 60 m, średnicy 0,25 mm i grubości filmu fazy stacjonarnej 0,5 µm). Opracowana metoda jest liniowa w zakresie stężeń 10,0 ÷ 400,0 µg/ml, co odpowiada zakresowi 1,0 ÷ 40,0 mg/m³ dla próbki powietrza o objętości 10 l. Opracowana metoda analityczna umożliwia oznaczanie 2-metoksypropan-1-olu w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania 2-metoksypropan-1-olu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
PL
1-Metylo-2-pirolidon (NMP) jest higroskopijną cieczą o lekko aminowym (rybnym) zapachu, pochodną γ-laktamu. NMP znalazł zastosowanie w przemyśle chemicznym jako polarny rozpuszczalnik do ekstrakcji, do mycia i odłuszczania części metalowych, do usuwania pozostałości żywic z części elektronicznych oraz starych powłok malarskich. Główną drogą narażenia na NMP w środowisku pracy jest droga inhalacyjna oraz kontakt przez skórę. Celem prac badawczych było opracowanie i walidacja metody oznaczania 1-metylo-2-pirolidonu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania NMP polega na adsorpcji par tej substancji na węglu z łupin orzecha kokosowego, ekstrakcji dichlorometanem i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w polarną kolumnę kapilarną ZB-WAXplus (o długości 60 m, średnicy 0,25 mm i grubości filmu fazy stacjonarnej 0,5 µm). Opracowana metoda jest liniowa w zakresie stężeń 40,0 ÷ 800,0 µg/ml, co odpowiada zakresowi 4,0 ÷ 80,0 mg/m³ dla próbki powietrza o objętości 10 l. Opracowana metoda analityczna umożliwia oznaczanie 1-metylo-2-pirolidonu w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania 1-metylo-2-pirolidonu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
1-Methyl-2-pyrrolidone (NMP) is a hygroscopic liquid with a slightly amine (fishy) odor, a derivative of γ-lactam. NMP has been used in the chemical industry as a polar solvent for extraction, washing and degreasing metal parts, removing residual resins from electronic parts, removing old paint coatings. The main route of exposure to NMP in workplace air is the inhalation route and skin contact. The aim of this study was to develop and validate a method for determining 1-methyl-2-pyrrolidone in workplace air. The developed method of NMP determination consists in adsorption of vapors of this substance on coconut shell charcoal, extraction with a dichloromethane and chromatographic analysis of the solution obtained in this way. The study was performed with gas chromatograph coupled with mass spectrometer (GC-MS), equipped with a polar ZB-WAXplus capillary column (length 60 m, diameter 0.25 mm and the film thickness of the stationary phase 0.5 µm). The developed method is linear in the concentration range of 40.0–800.0 µg/ml, which corresponds to the range of 4.0–80.0 mg/m³ for a 10-L air sample. The analytical method described in this paper makes it possible to determine 1-methyl-2-pyrrolidone in workplace air in the presence of comorbid substances. The method is precise, accurate and it meets the criteria for procedure for determining chemical agents listed in Standard No. PN-EN 482. The developed method for determining 1-methyl-2-pyrrolidone at workplace air has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
1-Etylo-2-pirolidon (NEP) jest bezbarwną cieczą o zapachu zbliżonym do amoniaku. Należy do związków organicznych z grupy laktamów, czyli jest etylową pochodną 2-pirolidonu. 1-Etylo-2-pirolidon ze względu na podobne właściwości fizykochemiczne stosowany jest w przemyśle jako zamiennik 1-metylo-2-pirolidonu (NMP). Używany jest jako rozpuszczalnik w przemyśle polimerowym, petrochemicznym, farb i lakierów, elektronicznym. Ponadto znalazł zastosowanie jako środek czyszczący do usuwania farb, lakierów, klejów, oleju czy smarów. 1-Etylo-2-pirolidon może wchłaniać się przez skórę, a także drogą inhalacyjną i pokarmową. Celem prac badawczych było opracowanie i walidacja metody oznaczania 1-etylo-2-pirolidonu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania NEP polega na adsorpcji par tej substancji na węglu z łupin orzecha kokosowego, ekstrakcji dichlorometanem i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w polarną kolumnę kapilarną ZB-WAXplus (o długości 60 m, średnicy 0,25 mm i grubości filmu fazy stacjonarnej 0,5 µm). Opracowana metoda jest liniowa w zakresie stężeń 15,0 ÷ 320,0 µg/ml, co odpowiada zakresowi 1,5 ÷ 32,0 mg/m³ dla próbki powietrza o objętości 10 l. Opracowana metoda analityczna umożliwia oznaczanie 1-etylo-2-pirolidonu w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania 1-etylo-2-pirolidonu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
-Ethyl-2-pyrrolidone (NEP) is a colorless liquid with ammonia-like odor. It belongs to the organic compounds from the lactam group, i.e., the ethyl derivative of 2-pyrrolidone. 1-Ethyl-2-pyrrolidone, due to similar physicochemical properties, is used in industry as a substitute for 1-methyl-2-pyrrolidone (NMP). It is used as a solvent in polymer, petrochemical, paint and varnish, and electronic industries. Moreover, it has been used as a cleaning agent for removing paints, varnishes, adhesives, oil or grease. 1-Ethyl-2-pyrrolidone can be absorbed through the skin as well as through inhalation and food. The aim of the this study was to develop and validate a method for determining 1-ethyl-2-pyrrolidone in workplace air. The developed method of NEP determination consists in adsorption of vapors of this substance on coconut shell charcoal, extraction with a dichloromethane and chromatographic analysis of the obtained solution. The study was performed using a gas chromatograph coupled with mass spectrometer (GC-MS), equipped with a polar ZB-WAXplus capillary column (length 60 m, diameter 0.25 mm and the film thickness of the stationary phase 0.5 µm). The developed method is linear in the concentration range of 15.0–320.0 µg/ml, which corresponds to the range of 1.5–32.0 mg/m³ for a 10-L air sample. The analytical method described in this paper makes it possible to determine 1-ethyl-2-pyrrolidone in workplace air in the presence of comorbid substances. The method is precise, accurate and it meets the criteria for procedure for measuring chemical agents listed in Standard No. PN-EN 482. Developed method of determining 1-ethyl2-pyrrolidone at workplace air has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Celem prac badawczych było opracowanie i walidacja metody oznaczania frakcji wdychalnej i respirabilnej związków manganu, niklu i żelaza w powietrzu na stanowiskach pracy. Metoda polega na pobraniu z powietrza na umieszczone w odpowiednim próbniku filtry z estrów celulozy frakcji wdychalnej i respirabilnej badanych związków. Filtry mineralizuje się w stężonym kwasie azotowym(V) i sporządza roztwór do analizy w rozcieńczonym kwasie azotowym(V). Zastosowanie różnej krotności rozcieńczania roztworu próbki po mineralizacji umożliwia wykorzystanie wyznaczonych zakresów krzywych wzorcowych przy oznaczaniu substancji jako mangan, nikiel i żelazo. Dodatek soli lantanu (buforu korygującego) zapobiega występowaniu interferencji chemicznych, użycie lampy deuterowej eliminuje interferencje tła. Opracowana metoda umożliwia oznaczanie wybranych substancji w powietrzu środowiska pracy w zakresach stężeń odpowiadających zakresowi 0,1 ÷ 2 obecnie obowiązujących wartości NDS i umożliwia również oznaczanie niklu i jego związków we frakcji wdychalnej dla obecnie proponowanej, nowej wartości najwyższego dopuszczalnego stężenia. Opracowana metoda została poddana walidacji zgodnie z wymaganiami zawartymi w normie PN-EN 482 i uzyskano dobre wyniki walidacyjne. Metoda może być wykorzystana do oceny narażenia zawodowego na związki niklu, manganu i żelaza w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania związków manganu, niklu i żelaza została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
The aim of this study was to develop and validate a method for determining of inhalable and respirable fraction of compounds of manganese, nickel and iron in workplace air. The method is based on passing the tested air through a filter from the cellulose ester mixture placed in a specific sampler. The filter mineralizes in concentrated nitric acid (V) and makes a solution for analysis in diluted nitric acid (V). The use of different dilutions of the sample solution after mineralization makes it possible to use the ranges of standard curves for the determination of substances as manganese, nickel and iron. The addition of lanthanum salt (correction buffer) prevents the occurrence of chemical interference, the use of deuterium lamp eliminates background interference. The developed method enables the determination of selected substances in the air of the working environment in the concentration ranges corresponding to the range from 0.1 to 2 MACs values and also enables the determination of nickel and its compounds in the inhalable fraction for the currently proposed new value of the maximum permissible concentration. The developed method has been validated in accordance with the requirements of Standard No. PN-EN 482 and good validation results were obtained. The method can be used for assessing occupational exposure to compounds of manganese, nickel and iron and associated risk to workers’ health. The developed method of determining compounds of manganese, nickel and iron has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Trietyloamina (TEA) jest trzeciorzędową aminą alifatyczną. Związek w temperaturze pokojowej występuje w postaci bezbarwnej, łatwopalnej cieczy o silnym (amoniakalnym) zapachu. Jest stosowany głównie jako: substrat do produkcji czwartorzędowych związków amonowych, katalizator w procesach polimeryzacji oraz środek emulgujący, np. dla barw-ników, pestycydów czy leków. Zawodowe narażenie na trietyloaminę może powodować podrażnienia: skóry, górnych dróg oddechowych i oczu, a także zaburzenia widzenia (widzenie zamglone, zamazane) lub zaburzenia widzenia barw (widzenie czerwono-niebieskie). Celem prac badawczych było opracowanie i walidacja metody oznaczania stężeń trietyloaminy w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania związku polega na: pochłanianiu tej substancji na żelu krzemionkowym pokrytym kwasem solnym, ekstrakcji za pomocą mieszaniny metanolu i wody oraz chromatograficznej analizie otrzymanego roztworu. Do badań zastosowano chromatograf gazowy z detektorem płomie-niowo-jonizacyjnym (GC-FID), wyposażony w kolumnę DB-5ms. Opracowana metoda jest liniowa w zakresie stężeń 7,5 ÷150 μg/ml, co odpowiada zakresowi pomiarowemu 0,03 ÷ 6 mg/m³ dla próbki powietrza o objętości 100 l. Opracowana metoda umożliwia oznaczanie trietyloaminy w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Opisana metoda analityczna charakteryzuje się dobrą precyzją oraz dokładnością i spełnia wymagania zawarte w normie europejskiej PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania trietyloaminy w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Triethylamine (TEA) is a tertiary aliphatic amine. At room temperature it is a colourless liquid with a strong ammonia odor. TEA is used as a substrat in production of quaternary ammonium compound, as a catalyst in polymerization process, as a solvent in organic synthesis and as an emulsifier in the production of dyes and pesticides. Occupational exposure to TEA can cause many adverse effects like skin, respiratory tract or eye irritation. TEA may cause also vision disorder like blurred vision or red-blue vision. The aim of this study was to develop and validate a method for determining TEA in workplace air. The developed method is based on the collection of TEA on sorbent tube filed with two sections of silica gel coated with hydrochloric acid. Silica gel is extracted with methanol:water mixture and resulted solution is analysed with capillary gas chromatography with flame-ionization detector. The study was performed using gas chromatograph equipped with DB-5ms column. The developed method is linear in the concentration range of 7.5–150 µg/ml, which is equivalent to the range of 0.03–6 mg/m³ for 100-L air sample. The analytical method described in this paper makes it possible to determine TEA in workplace air in the presence of other substances. The method is precise, accurate and it meets the criteria for procedures for determining chemical agents listed in Standard No. PN-EN 482. The developed method for determining TEA in workplace air has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Wolfram jest metalem przejściowym, który występuje w skorupie ziemskiej w postaci minerałów, z których po wydobyciu jest ekstrahowany. Brakuje danych na temat chronicznych efektów kontaktu z wolframem. Wolfram metaliczny w postaci drobnego proszku jest łatwopalny i może powodować mechaniczne podrażnienie skóry i oczu. Istnieją rozpuszczalne związki wolframu, które są sklasyfikowane jako związki toksyczne, powodujące uszkodzenie oczu i zagrażające środowisku wodnemu. Celem prac badawczych była nowelizacja normy PN-Z-04221-3:1996 dotyczącej oznaczania rozpuszczalnych związków wolframu na stanowiskach pracy metodą spektrofotometryczną z rodankiem potasu. Nowelizacja normy została przeprowadzona, ponieważ norma PN-Z-04221-3 opisuje metodę, w której oznaczalność wynosi 0,25 wartości NDS, a zgodnie z normą europejską PN-EN 482 oznaczalność metody musi być w zakresie 0,1 ÷ 2 NDS. Metoda polega na zatrzymaniu aerozolu rozpuszczalnych związków wolframu na filtrze z mieszaniny estrów celulozowych, a następnie rozpuszczeniu ich w wodzie. W kolejnym etapie wolfram redukowany jest z użyciem chlorku cyny, a następnie ulega reakcji z rodankiem potasu, dając barwny kompleks, który należy ekstrahować alkoholem izoamylowym, aby następnie zmierzyć absorbancję ekstraktu na spektrofotometrze UV-Vis. Pomiary wykonano z użyciem spektrofotometru UV-Vis Heλios firmy ThermoSpectronic model Beta. Wymagania walidacyjne przedstawione w normie europejskiej PN-EN 482 zostały spełnione przy wykonywaniu pomiarów. Dzięki metodzie można oznaczać znajdujące się w powietrzu rozpuszczalne związki wolframu o stężeniach 0,1 ÷ 2 mg/m³ . Granica oznaczalności LOQ wynosi 1,875 ng. Precyzja pomiarów wynosi 5,06%, a niepewność rozszerzona 22,09%. Metoda oznaczania rozpuszczalnych związków wolframu została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Tungsten is a transition metal which occurs in the Earth’s crust as minerals which after being mined is extracted. There is no data on chronic effects of contact with tungsten, although fine tungsten powder is flammable and can cause mechanical irritation to skin and eyes. However, there are soluble tungsten compounds, which are classified as toxic, causing damage to the eyes, and being harmful to the aquatic environment. The aim of the study was to amend Standard No. PN-Z-04221-3 determination of soluble tungsten compounds in workplace air using spectrophotometric method with potassium thiocyanate. The amendment was performed because Standard No. PN-Z-04221-3 describes a method in which the quantification is 0.25 mg/m³ , according to European Standard No. EN 482 the quantification of method must be in range of 0.1 – 2 mg/m³ . The method is based on depositing soluble tungsten compounds on a cellulose esters filter and then dissolving them in water. Then tungsten is reduced with tin chloride, after reaction with potassium thiocyanate, tungsten becomes a complex. Tungsten complex should be extracted with isoamyl alcohol and then absorbance should be measured on a UV-Vis spectrophotometer. The tests were performed with the UV-Vis Heλios spectrophotometer by ThermoSpectronic model Beta. The validation requirements of European Standard No. EN 482 were met. With this method soluble tungsten compounds in air can be determined at concentration of 0.1 – 2 mg/m³ . The limit of quantification (LOQ) is 1.875 ng. The overall accuracy of the method is 5.06% and its relative total uncertainty is 22.09%. The method for determining tungsten has been recorded in a form of an analytical procedure (see Appendix). This article discusses problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Nadtlenek wodoru w temperaturze pokojowej występuje w postaci bezbarwnej, przejrzystej cieczy, o słabym zapachu ozonu. Nadtlenek wodoru jest wykorzystywany jako wybielacz w przemyśle papierniczym, spożywczym i kosmetycznym oraz do produkcji paliwa rakietowego. Właściwości utleniające nadtlenku wodoru są wykorzystywane w procesie oczyszczania ścieków oraz w medycynie do odkażania ran (woda utleniona). W chemii analitycznej związek ten wykorzystywany jest w oznaczeniach śladowych ilości metali. Szkodliwe działanie nadtlenku wodoru polega na działaniu drażniącym na skórę, błony śluzowe oczu i górnych dróg oddechowych. Celem prac badawczych było opracowanie i walidacja metody oznaczania nadtlenku wodoru w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania polega na pochłanianiu nadtlenku wodoru w wodzie, a następnie na spektrofotometrycznym oznaczeniu kompleksu oranżu ksylenolowego z utlenionymi przez nadtlenek wodoru jonami żelaza (Fe III). Do badań wykorzystano spektro¬fotometr UNICAM umożliwiający wykonanie oznaczeń przy długości fali 560 nm. Opracowana metoda jest liniowa w zakresie stężeń 0,02 ÷ 0,4 μg/ml, co odpowiada zakresowi 0,04 ÷ 0,8 mg/m³ dla próbki powietrza o objętości 10 l. Opracowana metoda umożliwia oznaczanie nadtlenku wodoru w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania nadtlenku wodoru w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Hydrogen peroxide at room temperature is a colourless clear liquid with weak ozone like odour. It is used as a bleach in paper, food and cosmetics industry and in rocket fuel production. It is also used in waste water and waste gas treatment and as a disinfectant in wounds treatment. In analytical chemistry, hydrogen peroxide is used to determine trace amounts of metals. Hydrogen peroxide may cause irritation of eyes, skin, and respiratory tract. The goal of this research was to develop and validate a method for determining hydrogen peroxide in workplace air. Developed method is based on the collection of hydrogen peroxide with water filled bubbler and spectrophotometric determination of xylenol orange and ferrum (III) ions complex. Developed method is linear in the concentration range of 0.2-4.0 µg/ml, which corresponds to the range of 0.04-0.8 mg/m³ for 10-L air sample. The analytical method described in this paper makes it possible to determine hydrogen peroxide in workplace air in the presence of other substances. The method is precise, accurate and it meets the criteria for procedures for determining chemical agents listed in Standard No. PN-EN 482. The developed method of determining hydrogen peroxide in workplace air has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Furan jest bezbarwną, bardzo lotną i łatwopalną cieczą o charakterystycznym eterowym zapachu. Występuje naturalnie w niektórych gatunkach drewna, powstaje podczas spalania drewna, tytoniu i paliw, a także obróbki termicznej żywności. W przemyśle furan jest stosowany jako półprodukt w syntezie organicznej, rozpuszczalnik żywic, przy produkcji lakierów, leków, stabilizatorów i insektycydów, a także do produkcji związków chemicznych o strukturze polimerycznej i związków kompleksowych. Działanie rakotwórcze na zwierzęta było podstawą do uznania furanu za substancję o prawdopodobnym działaniu rakotwórczym na ludzi. Celem prac badawczych było opracowanie i walidacja metody oznaczania furanu w powietrzu na stanowiskach pracy. Opracowana metoda oznaczania furanu polega na adsorpcji par tej substancji na węglu łupin z orzecha kokosowego, ekstrakcji za pomocą roztworu butan-1-olu w toluenie i analizie chromatograficznej tak otrzymanego roztworu. Do badań wykorzystano chromatograf gazowy sprzężony ze spektrometrem mas (GC-MS), wyposażony w niepolarną kolumnę kapilarną HP-PONA (o długości 50 m, średnicy 0,2 mm i grubości filmu fazy stacjonarnej 0,5 µm). Opracowana metoda jest liniowa w zakresie stężeń 0,05 ÷ 1,0 µg/ml, co odpowiada zakresowi 0,005 ÷ 0,1 mg/m³ dla próbki powietrza o objętości 10 l. Opracowana metoda analityczna umożliwia oznaczanie furanu w powietrzu na stanowiskach pracy w obecności substancji współwystępujących. Metoda charakteryzuje się dobrą precyzją i dokładnością i spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Opracowana metoda oznaczania furanu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Furan is colorless, highly volatile and flammable liquid with a specific ether odor. In nature it occurs in some species of wood, it is formed during burning process of wood, tobacco, fuels and also in thermal food processing. In industry furan is used as an intermediate in organic synthesis, resins solvent, during production of lacquer, drugs, stabilizers, insecticides and also in production of chemical compounds which have polymeric and coordination structure. Carcinogenic effect on animals was a base of recognition that furan is a substance which is probably also carcinogenic on humans. The aim of this study was to develop and validate a method of determining furan in workplace air. Developed determination method of furan relies on vapor absorption of this substance on coconut shell charcoal. Furan was extracted by 5% butan-1-ol solution in toluene. Obtained solution was analyzed with chromatography. The study was performed with gas chromatograph coupled with mass spectrometer (GC-MS), equipped with non-polar HP-PONA capillary column (length 50 m, diameter 0.2 mm and the film thickness of the stationary phase 0.5 µm). Developed method is linear in the concentration range of 0.05–1.0 µg/ml, which is equivalent to the range of 0.005–0.1 mg/m³ for 10-L air sample. The analytical method described in this paper makes it possible to determine furan in workplace air in the presence of comorbid substances. The method is precise, accurate and it meets the criteria for procedures for determining chemical agents listed in Standard No. PN-EN 482. The developed method of determining furan in workplace air has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Dinitrotoluen (DNT) to żółte, krystaliczne ciało stałe o charakterystycznym zapachu. Może składać się z sześciu izomerów, ale tylko dwa (2,4-DNT i 2,6-DNT) mają znaczenie przemysłowe. Dinitrotoluen może powodować nowotwory. Celem prac badawczych było opracowanie metody oznaczania mieszaniny izomerów dinitrotoluenu w powietrzu na stanowiskach pracy, która umożliwi oznaczanie jego stężeń na poziomie 0,033 mg/m³. Opracowana metoda polega na: zatrzymaniu zawartej w powietrzu mieszaniny izomerów dinitrotoluenu na włóknie szklanym i żelu krzemionkowym, ekstrakcji metanolem i analizie chromatograficznej otrzymanego roztworu. Badania wykonano z zastosowaniem chro-matografu cieczowego (HPLC) serii 1200 firmy Agilent Technologies z detektorem diodowym (DAD). Walidację metody przeprowadzono zgodnie z wymaganiami zawartymi w normie europejskiej PN-EN 482. Metoda umożliwia oznaczanie mieszaniny izomerów dinitrotoluenu w powietrzu środowiska pracy w zakresie stężeń 0,033 ÷ 0,66 mg/m³. Opisywana metoda analityczna umożliwia oznaczanie mieszaniny izomerów dinitrotoluenu w powietrzu na stanowiskach pracy, w obecności: tolueno-2,4-diaminy, tolueno-2,6-diaminy, diizocyjanianu tolueno-2,4-diylu, diizocyjanianu tolueno-2,6 -diylu i toluenu. Opracowana metoda oznaczania mieszaniny izomerów dinitrotoluenu w powietrzu na stanowiskach pracy została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Dinitrotoluene (DNT) is a yellow, crystalline solid with a characteristic odor. It may consist of 6 isomers, but only two (2,4-DNT and 2,6-DNT) are of industrial importance. DNT can cause cancer. The aim of this study was to develop a method for determining mixture of DNT isomers in workplace air, which will allow to determine its concentration at the level of 0.033 mg/m³ . The method is based on the collection of the mixture of dinitrotoluene isomers contained in the air on glass fiber and silica gel, extraction with methanol and chromatographic analysis of obtained solution. The tests were performed using a liquid chromatograph (HPLC) 1200 series from Agilent Technologies with a diode array detector (DAD). The method was validated in accordance with the requirements of Standard No. EN 482. The method allows to determine mixture of DNT isomers in the workplace air in the concentration range: 0.033–0.66 mg/m³ . The described method makes it possible to determine mixture of DNT isomers in the workplace air in the presence of: toluene-2,4-diamine, toluene-2,6-diamine, toluene-2,4-diyl diisocyanate, toluene-2,6-diyl diisocyanate and toluene. The method for determining dinitrotoluene has been recorded as an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Bicyklo[4.4.0]dekan (BCD), znany też jako dekalina, to bezbarwna ciecz o zapachu: kamfory, mentolu i naftaliny. Związek może powodować śmierć w wyniku połknięcia i przedostania się do dróg oddechowych. Bicyklo[4.4.0]dekan może również wywoływać poważne oparzenia skóry i uszkodzenia oczu, działa toksycznie w przypadku wdychania. Celem prac badawczych było opracowanie metody oznaczania bicyklo[4.4.0]dekanu w powietrzu na stanowiskach pracy, która umożliwi oznaczanie jego stężeń na poziomie 5 mg/m³ . Metoda polega na: adsorpcji zawartych w badanym powietrzu par bicyklo[4.4.0]dekanu na węglu aktywnym, desorpcji roztworem acetonu w disiarczku węgla i analizie chromatograficznej otrzymanego roztworu. Badania wykonano z zastosowaniem chromatografu gazowego (GC) z detektorem płomieniowo-jonizacyjnym (FID) wyposażonym w kolumnę kapilarną DB-VRX (60 m × 0,25 mm, 1,4 µm). Walidację metody przeprowadzono zgodnie z wymaganiami zawartymi w normie europejskiej PN-EN 482. Metoda umożliwia oznaczanie bicyklo[4.4.0]dekanu w powietrzu środowiska pracy w zakresie stężeń 5 ÷ 200 mg/m³ . Metoda oznaczania bicyklo[4.4.0]dekanu została przedstawiona w postaci procedury analitycznej, którą zamieszczono w załączniku. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Bicyclo[4.4.0]decane (BCD), also known as decalin, is a colorless liquid with the scent of camphor, menthol and naphthalene. This substance can be fatal if swallowed or entered a respiratory tract. It can cause severe skin burns and eye damage, and is toxic if inhaled. The aim of this study was to develop a method for determining BCD in workplace air, which will allow the determination of its concentrations at the level of 5 mg/m³ . The method was based on adsorption of BCD vapors on activated carbon, desorption with acetone solution in carbon disulfide and chromatographic analysis of the obtained solution. The study was performed with a gas chromatograph (GC) with a flame ionization detector (FID) equipped with a DB-VRX capillary column (60 m × 0.25 mm, 1.4 µm). The method was validated in accordance with the requirements of Standard No. EN 482. The method allows the determination BCD in workplace air in the concentration range 5–200 mg/m³ . The method for determining BCD has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
first rewind previous Strona / 11 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.