Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  metoda MHR
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Ramowa Dyrektywa Wodna 2000/60 wymaga wykonania monitoringu hydromorfologicznego rzek. Kraje członkowskie we własnym zakresie opracowują metodyki, zapewniające dokonanie oceny stanu i potencjału ekologicznego w przedziale 5 klas jakości. Przedstawiono wyniki badań pilotowych, wykonanych w Polsce za pomocą nowej metody MHR (Monitoring Hydromorfologiczny Rzek). Obejmowały one 11 jednolitych części wód powierzchniowych (JCWP) o łącznej długości 358,2 km, znajdujących się w różnych częściach kraju. Badania obejmowały jednolite części wód, głównie nizinne cieki naturalne. Określone współczynniki jakości ekologicznej (WJE) umożliwiają ocenę stanu ośmiu i potencjału ekologicznego trzech jednolitych części wód powierzchniowych. Wskazują również, które z 4 elementów i 16 wskaźników w największym zakresie wpływają na wynik oceny.
EN
The Water Framework Directive 2000/60 obligates to realize the monitoring of hydromorphological elements of rivers. Member states should establish methodology for the assessment of the state and ecological potential within the 5 quality classes. In this article the results of pilot studies carried out in Poland using a new MHR (River Hydro-morphological Monitoring) method are presented. The studies involved 11 water bodies, mainly lowland rivers in different parts of the country, with a total length of 358.2 km. The Ecological Quality Ratios (EQR) established during the study allow for assessing the state of eight and the ecological potential of three water bodies. They also indicate which of the 4 elements and 16 indices exert the largest influence on results.
PL
Zagadnienie rekonstrukcji kształtu obiektów płaskich wymaga metod, które potrafią w sposób elastyczny zrekonstruować kontur obiektu na podstawie punktów charakterystycznych i które to metody pozwolą na wybór ostatecznego kształtu obiektu spośród kilku wersji. Jedna z takich metod, opracowana i nazwana przez autora metodą Macierzy Hurwitza-Radona (MHR), może zostać użyta w modelowaniu i rekonstrukcji obrazów 2D i 3D, które opisane są za pomocą konturów i krzywych. Metoda ta jest oparta na rodzinie macierzy Hurwitza-Radona (HR). Macierze HR są skośno-symetryczne i składają się z kolumn tworzących ortogonalne wektory. W pracy pokazano jak konstruować Operator Hurwitza-Radona (OHR) oraz jak wykorzystać go w procesie interpolacji konturu i w modelowaniu obiektu. Brakujące punkty konturu obliczane są z zastosowaniem wypukłej kombinacji M2 dwóch operatorów OHR M0 i M1: M2 = αk ×M0+(1-α k)×M1. Formuła obliczeń to Y(C) = M2×C. Dobór parametru k z przedziału (0;2] pozwala modelować i rekonstruować kontur obiektu. Opisana metoda wymaga odpowiedniego wyboru węzłów, tzn. punktów charakterystycznych odtwarzanej krzywej: węzły powinny być umieszczone w każdym minimum lub maksimum jednej ze współrzędnych i węzły powinny być monotoniczne względem jednej współrzędnej (np. równoodległe). Metoda MHR modeluje kontur i kształt obiektu punkt po punkcie, bez użycia wzoru funkcji opisującej krzywą.
EN
Reconstruction of object’s shape in the plane needs suitable methods for interpolation of the object contour based on characteristic points. Such a method ought to reconstruct the contour in elastic way and must let us choose a final shape of the object among few versions. One of them, invented by the author and called the method of Hurwitz-Radon Matrices (MHR), can be used in modeling and reconstruction of 2D and 3D objects, which are described by contours and curves. The method is based on a family of Hurwitz-Radon (HR) matrices. The matrices are skew-symmetric and possess columns composed of orthogonal vectors. The Operator of Hurwitz-Radon (OHR), built from these matrices, is described. It is shown how to create the orthogonal and discrete OHR and how to use it in a process of contour interpolation and object modeling. Contour points are calculated by convex combination M2 of two OHR operators M0 and M1: M2 = α k ×M0+(1-α k )×M1. Formula of calculations: Y(C) = M2×C. Parameter k from range (0;2] is responsible for appropriate modeling i reconstruction of object contour. The method needs suitable choice of interpolation nodes, i.e. points of the curve to be reconstructed: nodes should be settled at each local extremum and nodes should be monotonic in one of coordinates. MHR method is modeling the contour and shape of the object point by point, without using any formula of function or mathematical form of curve
PL
Metoda MHR modeluje kontur punkt po punkcie bez użycia wzoru funkcji opisujacej krzywą. Podstawowe cechy metody MHR są następujace: dokładność rekonstrukcji konturu lub krzywej zależy od liczby węzłów i sposobu wyboru wezłów (na przykład węzły o stałym kroku jednej współrzędnej); stabilność – mała zmiana współrzędnych węzła powoduje małe zmiany obliczanych punktów; odtworzenie konturu o L pikselach jest związane ze złożonością obliczeniową rzędu O(L); przekształcenia geometryczne (przesunięcia, obroty, skalowanie) są łatwe: tylko węzły wymagają przekształcenia i nowy obraz dla nowych wezłów może zostać zrekonstruowany; metodą korzysta z lokalnych operatorów OHR: pojedynczy średni operator M2 lub M2 -1 zbudowany jest na podstawie kolejnych 4, 8 lub 16 węzłów (2N dla N = 2, 4 oraz 8), co powoduje znacznie mniej obliczeń niż wykorzystanie wszystkich wezłów dla zbudowania operatora; istotny jest także fakt, iż zmiana współrzędnych węzła (xi,yi) np. o indeksie i = 2 nie spowoduje zmian obliczanych wartości współrzędnych punktów między węzłami np. o indeksach i = 25 oraz 26; możliwość zastosowania metody MHR w obrazach trójwymiarowych. W dalszych pracach należy omówic przekształcenia geometryczne obiektów płaskich i przestrzennych oraz ich rekonstrukcje metodą MHR po przekształceniu wezłów, specyficzne własności MHR dla węzłów o stałym kroku jednej współrzędnej oraz inne zastosowania MHR w grafice i wizji komputerowej (rozpoznawanie obiektów [15], obliczanie współczynników kształtu).
EN
To deal with 3D image representation and reconstruction dedicated methods should be constructed. One of them, called by author method of Hurwitz-Radon Matrices (MHR), can be used in reconstruction of 3D images which are described by points belong to horizontal contours. The method is based on a family of Hurwitz-Radon (HR) matrices. The operator of Hurwitz-Radon (OHR), built from that matrices, is described. It is shown how to create the orthogonal and discrete OHR and how to use it in a process of curve interpolation and image reconstruction. The method needs suitable choice of nodes, i.e. characteristic points of the curve to be reconstructed: nodes should be settled at each minimum or maximum of one coordinate and nodes should be monotonic in one of coordinates. Created from the family of N-1 HR matrices and completed with the identical matrix, system of matrices is orthogonal only for vector spaces of dimensions N = 2, 4 and 8. Orthogonality of columns and rows is very important and significant for stability and high precision of calculations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.