Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  methylaluminoxane
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Cykliczne węglany w syntezie polimerów biodegradowalnych
PL
We wstępnym przeglądzie literatury przedstawiono najważniejsze wyniki badań w dziedzinie biodegradacji poliwęglanów alifatycznych i kopolimerów otrzymywanych z cyklicznych węglanów (węglanu etylenu i węglanu trimetylenu) z monomerami heterocyklicznymi. Przedyskutowano najnowszy pogląd na mechanizm degradacji poli(węglanu etylenu) in vivo z udziałem anionorodnika nadtlenkowego inicjującego depolimeryzację łańcuchową prowadzącą do węglanu etylenu oraz dalej do CO2 i glikolu etylenowego [równanie (4)]. W części dotyczącej badań własnych omówiono wyniki badań homopolimeryzacji różnych monomerów heterocyklicznych [m.in. tlenku propylenu (POX), węglanu etylenu (EC), węglanu trimetylenu (TMC), L-laktydu (L-LA)] katalizowanych metyloalumoksanem (MAO). Polimery badano metodami 1H NMR, 13C NMR oraz MALDI TOF. Wykazano, że w obecności MAO powstają produkty o budowie zarówno liniowej, jak i cyklicznej. Tworzenie się makrocyklicznych oligomerów świadczy o obecności w strukturze MAO pewnej ilości centrów elektrofilowych prowadzących do reakcji typu back-bitting. L-Laktyd i racemiczny laktyd poddawano kopolimeryzacji z EC oraz terpolimeryzacji z EC i POX w obecności różnych katalizatorów (MAO, MAO modyfikowany ZnEt2) uzyskując kopolimer zawierający maksymalnie do 6,5 % jednostek wagowych. Kopolimer L-LA/EC z największą (6,5 %) zawartością merów węglanowych otrzymano w obecności MAO modyfikowanego za pomocą ZnEt2.
EN
In the literature review most important results of studies on biodegradability of aliphatic polycarbonates and copolymers of cyclic carbonates (ethylene carbonate or trimethylene carbonate) with heterocyclic monomers have been presented. A new idea about mechanism of poly(ethylene carbonate) degradation in vivo in the presence of peroxide anion-radical initiating the chain depolymerization leading to ethylene carbonate and further to CO2 and ethylene glycol [equation (4)] has been discussed. In the part concerning authors' research the results of homopolymerization of various heterocyclic monomers [among others propylene oxide (POX), ethylene carbonate (EC), trimethylene carbonate (TMC), L-lactide (L-LA)] catalyzed with methylaluminoxane (MAO) (Table 1) were presented. The polymers were investigated using 1H NMR (Fig. 1), 13C NMR (Fig. 2) and MALDI TOF (Figs. 3, 4) methods. It was demonstrated that in the presence of MAO the products showing the linear as well as cyclic structures were formed. Formation of macrocyclic oligomers shows the presence of some electrophilic centers in MAO structure, which lead to the reaction of back-bitting type. L-lactide and racemic lactide were copolymerized with EC or terpolymerized with EC and POX in the presence of various catalysts (MAO, MAO modified with ZnEt2, Et2AlOEt - Table 2). The products obtained contained up to 6.5 % of carbonate units maximally. L-LA/EC copolymer with the highest content (6.5 wt. %) of carbonate mers was obtained in the presence of MAO modified with ZnEt2.
EN
Molecular weights of polyethylene (PE) obtained with using of zirconocene catalyst activated with large excess of methylaluminoxane (MAO) were determined by gel permeation chromatography (GPC) method. It was found that repeatability of the measurements is strongly influenced by MAO remained in PE samples as well as time of sample keeping in the apparatus (dissolution + measurement time) at temp. 142 °C. A method of MAO removing from PE samples, before GPC measurement, based on additional washing of the sample with HF in methanol solution has been proposed. This modification leads to better both authenticity and repeatability of the results. Studies on the influence of time of sample keeping in the apparatus at temp. 142 °C showed that dissolution time of a polymer showing molecular weight up to 3 o 105 g/mol should not exceed 24 h.
PL
Metodą chromatografii żelowej (GPC) oznaczano ciężary cząsteczkowe polietylenu (PE) otrzymanego wobec katalizatora cyrkonocenowego aktywowanego dużym nadmiarem metyloalu-minoksanu (MAO). Wykazano, że na powtarzalność pomiarów wywiera wpływ MAO pozostający w próbkach PE oraz czas przebywania (rozpuszczanie + pomiar) próbek w aparacie w temp. 142 C. Zaproponowano metodę usuwania MAO z próbek PE (dodatkowe przemywanie metanolowym roztworem HF) przed poddaniem ich analizie GPC. Ta modyfikacja prowadzi do większej wiarygodności i lepszej powtarzalności wyników (tabela 1). Badania wpływu czasu przebywania próbek PE w temp. 142 °C wykazały (tabela 2), że czas rozpuszczania polimeru o ciężarze cząsteczkowym ok. 3 * 10 g/mol nie powinien przekraczać 24 h.
EN
Ethylene was sequentially homopolymerized (35°C, 15-90 min) and copolymerized (35°C, 25-30 min) with 1-hexene or 1-octene over a Cp2ZrCl2/MAO or a C2H4(Ind)2ZrCl2/MAO catalyst in toluene as solvent; a-olefin conversions were 55-60 mol %. The preliminary homopolymeriza-tion of ethylene was found to affect only slightly the composition and the MW and MWD property data of the resulting ethylene-hexene (CEH) and ethylene-octene (CEO) copolymers. HDPE/CEH and HDPE/CEO reactor mixtures (RM) were synthesized, containing various proportions of the copolymers (Table 2). The RM components were found to cocrystallize during the polymerization process. Mechanical property data were determined for pure and for modified HDPE (Table 3). With the copolymer endowed with desired properties and introduced into HDPE in an appropriate amount, high-strength and simultaneously high-MFR materials can be prepared.
PL
Etylen poddawano w temp. 35°C w środowisku toluenu dwuetapowej sekwencyjnej homopolimeryzacji lub kopolimeryzacji z 1-heksenem lub 1-oktenem w obecności katalizatora cyrkonocenowego Cp2ZrCl2/MAO albo C2H4(Ind)2ZrCl2/MAO (MAO = metyloaluminoksan); stosunek [Al]:[Zr] wynosił przy tym 2000. W uzyskanych produktach zawierających 4,4-8,0% mol a-olefiny oznaczano zawartość rozgałęzień CH3/100 C (tabela 1). Stwierdzono, że wstępna homopolimeryzacja etylenu nieznacznie wpływa na skład oraz na wartości ciężaru cząsteczkowego i rozkładu ciężaru cząsteczkowego uzyskanych kopolimerów. Otrzymano różniące się składem "mieszaniny reaktorowe" PE-LD z kopolimerem etylen/1-heksen (CEH) i PE-LD z kopolimerem ety-len/1-okten (CEO) i scharakteryzowano ich właściwości (M,", Mw/M", gęstość, temperatura topnienia - tabela 2). Stwierdzono, że składniki tych mieszanin wykazują zdolność współkrystalizowania bezpośrednio podczas polimeryzacji. Porównano właściwości mechaniczne samego PE-HD i kopolimeru CEH oraz mieszanin PE-LD z CEH (tabela 3). Stwierdzono, że wprowadzenie do PE-HD odpowiedniej ilości kopolimeru etylen/a-olefina o dobranych właściwościach pozwala na uzyskanie tworzywa o dużej wytrzymałości mechanicznej w połączeniu z odpowiednią wartością masowego wskaźnika szybkości płynięcia.
4
Content available remote Advances in supported metallocene catalysis
EN
A kinetic, active centre, and morphological analysis has been carried out on the polymerization of ethylene and propylene in hydrocarbon, aromatic and chloroaromatic media using selected homogeneous and silica supported metallocene catalysts activated by methylaluminoxane(MAO).
PL
Przedstawiono wyniki badań kinetyki polimeryzacji etylenu i propylenu prowadzonych w różnych rozpuszczalnikach w obecności wybranych homigenicznych i nośnikowych katalizatorów metalocenowych aktywowanych metyloaluminoksanem (MAO).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.