Decision algorithms useful in classifying meteorological volumetric radar data are the subject of described in the paper experiments. Such data come from the Radar Decision Support System (RDSS) database of Environment Canada and concern summer storms created in this country. Some research groups used the data completed by RDSS for verifying the utility of chosen methods in volumetric storm cells classification. The paper consists of a review of experiments that were made on the data from RDSS database of Environment Canada and presents the quality of particular classifiers. The classification accuracy coefficient is used to express the quality. For five research groups that led their experiments in a similar way it was possible to compare received outputs. Experiments showed that the Support Vector Machine (SVM) method and rough set algorithms which use object oriented reducts for rule generation to classify volumetric storm data perform better than other classifiers.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.