Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  metanogeny
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Rola archeonów w biologicznym rozkładzie węglowodorów
PL
Archeony są grupą mikroorganizmów opisanych po raz pierwszy przez Carla Woese’a w 1977 roku. Od tego czasu nastąpił duży postęp w badaniach nad tymi organizmami. Wciąż jednak pozostają one słabo poznane, gdyż przedstawicieli wielu nowo odkrytych linii filogenetycznych Archaea nie udaje się wyhodować w warunkach laboratoryjnych. Archeony stanowią istotny element mikrobioty zasiedlającej większość morskich i lądowych ekosystemów (również środowisk skrajnych) oraz pełnią ważną rolę w obiegu węgla, azotu i siarki. Drobnoustroje te występują również w miejscach zanieczyszczonych węglowodorami (np. skażone gleby, naturalne wycieki ropy naftowej i gazu), będąc zaangażowane w transformacje tych związków. Organizmy te biorą udział w przemianach tlenowych i beztlenowych, mianowicie w: (1) metanogennej degradacji węglowodorów, (2) beztlenowym utlenianiu metanu, (3) beztlenowym rozkładzie wyższych węglowodorów alifatycznych i aromatycznych oraz (4) tlenowych przemianach obu wymienionych grup substancji. W procesy te zaangażowane są odmienne grupy archeonów, jednakże głównie Euryarchaeota wykazują zdolności metaboliczne umożliwiające udział w każdym z wymienionych obszarów transformacji. Coraz większa liczba doniesień wskazuje, że najprawdopodobniej omawiany potencjał metaboliczny występuje również poza taksonem Euryarchaeota. Determinanty genetyczne związane z beztlenowym metabolizmem n-alkanów zostały wykryte w genomach przypisanych do mikroorganizmów z supertypów Asgard i TACK. Obecnie istnieje silna potrzeba, aby poszerzyć wiedzę dotyczącą archeonów zaangażowanych w biotransformacje węglowodorów; szczególna uwaga powinna zostać skierowana na mechanizmy degradacji wspomnianych związków oraz na genetyczne i enzymatyczne podstawy tych przemian. W niniejszym artykule przedstawiono najnowszą wiedzę na temat archeonów biorących udział w przemianach węglowodorów.
EN
Archaea constitute a microbial group described for the first time by Carl Woese in 1977. Since then, great progress has been made with regard to understanding of Archaea; this group, however, still remains poorly known since the representatives of many novel phylogenetic, archaeal lineages cannot be cultivated under laboratory conditions. These organisms are important members of microbiota occurring in the majority of marine and terrestrial ecosystems (including extreme ones) and play a key role in global cycles of carbon, nitrogen and sulfur. Archaea are also present at sites polluted with hydrocarbons (such as oil-contaminated soils, natural oil seeps, cold seeps) and are involved in hydrocarbon transformation. They take part in both aerobic and anaerobic conversions, namely: (1) methanogenic hydrocarbon degradation, (2) anaerobic methane oxidation, (3) anaerobic degradation of higher aliphatic hydrocarbons and aromatic compounds, and (4) aerobic transformations of these substances. Various archaeal groups possess the necessary metabolic potential; however, mainly the microorganisms belonging to Euryarchaeota reveal the metabolic capabilities to participate in each of these four areas of transformation. The increasing number of papers indicates that this potential also occurs in taxa other than Euryarchaeota. The genetic determinants associated with anaerobic oxidation of n-alkanes were found in the genomes belonging to Asgard and TACK superphyla. There is an urgent need to expand our current knowledge of Archaea involved in hydrocarbon biotransformation, especially in the area of degradation mechanisms, genetic and enzymatic background of these conversions. The article presents a review of the recent knowledge on Archaea capable of metabolizing hydrocarbons.
EN
Anaerobic digestion is an important technology for the bio-based economy. The stability of the process is crucial for its successful implementation and depends on the structure and functional stability of the microbial community. In this study, the total microbial community was analyzed during mesophilic fermentation of sewage sludge in full-scale digesters. The digesters operated at 34–35°C, and a mixture of primary and excess sludge at a ratio of 2:1 was added to the digesters at 550 m3/d, for a sludge load of 0.054 m3/(m3•d). The amount and composition of biogas were determined. The microbial structure of the biomass from the digesters was investigated with use of next-generation sequencing. The percentage of methanogens in the biomass reached 21%, resulting in high quality biogas (over 61% methane content). The abundance of syntrophic bacteria was 4.47%, and stable methane production occurred at a Methanomicrobia to Synergistia ratio of 4.6:1.0. The two most numerous genera of methanogens (about 11% total) were Methanosaeta and Methanolinea, indicating that, at the low substrate loading in the digester, the acetoclastic and hydrogenotrophic paths of methane production were equally important. The high abundance of the order Bacteroidetes, including the class Cytophagia (11.6% of all sequences), indicated the high potential of the biomass for efficient degradation of lignocellulitic substances, and for degradation of protein and amino acids to acetate and ammonia. This study sheds light on the ecology of microbial groups that are involved in mesophilic fermentation in mature, stably-performing microbiota in full-scale reactors fed with sewage sludge under low substrate loading.
PL
Fermentacja metanowa jest ważnym elementem biogospodarki. Efektywna eksploatacja reaktorów zależy od stabilności procesu determinowanej składem gatunkowym mikroorganizmów. W pracy badano strukturę mikrobiologiczną biomasy podczas mezofilowej fermentacji osadów ściekowych w skali technicznej. Do komór fermentacyjnych eksploatowanych w 34–35°C wprowadzano mieszaninę osadu wstępnego oraz nadmiernego w stosunku 2:1, w ilości 550 m3/d (0,054 m3/(m3•d)). Badane były ilość i skład wytwarzanego biogazu. Biomasę z fermentorów poddawano badaniom metagenomowym z wykorzystaniem wysokosprawnego sekwencjonowania. Wysoka jakość biogazu (ponad 61% zawartości metanu) była determinowana odsetkiem metanogenów w biomasie wynoszącym 21%. Udział bakterii syntroficznych w biomasie wyniósł 4,47%, a stabilną produkcję metanu zaobserwowano przy stosunku Methanomicrobia do Synergistia wynoszącym 4,6:1,0. Wśród metanogenów najliczniejsze były rodzaje Methanosaeta i Methanolinea, co wskazuje, że przy niskim obciążeniu komór fermentacyjnych acetoklastyczny i hydrogenotroficzny szlak produkcji metanu są równie ważne. Wysoka liczebność Bacteroidetes, w tym klasy Cytophagia (11,6% wszystkich sekwencji), wskazuje na wysoką zdolność biomasy do efektywnego rozkładu substancji lignocelulozowych oraz rozkładu białek i aminokwasów do octanu i amoniaku. Badania dostarczają danych na temat ekologii mikroorganizmów we wpracowanych, stabilnie funkcjonujących reaktorach fermentacji mezofilowej w skali technicznej zasilanych osadami ściekowymi w warunkach niskiego obciążenia substratowego.
3
Content available remote Characteristics of microbial communities in biomethanization processes
EN
Biomethanization of mixed organic substances is the effect of coexistence of numerous groups of microorganisms. Methanogenic degradation of such substances involves at least three different trophic groups of anaerobes, namely fermentative heterotrophs, proton-reducing syntrophs and methanogenic archaea. The development of molecular techniques allowed to detect some new groups of bacteria and archea, which often stay unculturable. The cultivation of uncultured organisms is of great significance in recognizing the function of these organisms. In the past few years, newly discovered microorganisms have been successfully isolated from anaerobic sludges, and the information regarding their physiology in connection with phylogeny is updated regularly.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.