Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  metallic sponges
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Porous metal with uniform honeycomb structure was successfully produced by sintering using Fe-Cr-Al nano powder, which was prepared by the pulsed wire evaporation (PWE) in ethanol. Its process consisted of the several steps; 1) coating on the surface of polyurethane sponge with the liquid droplets generated from the ethanol-based slurry where the Fe-Cr-Al nano powders were uniformly dispersed, 2) heat treatment of debinding to remove the polyurethane sponge and 3) sintering of the porous green body formed by Fe-Cr-Al nano powders. The strut thickness of porous Fe-Cr-Al was increased by the increase of spraying times in ESP step. Also, The shrinkages and the oxidation resistance of the sintered porous body was increased with increase of sintering temperature. The optimal sintering temperature was shown to 1450°C in views to maximize the oxidation resistance and sinterability.
2
Content available remote Manufacturing of cellular A2011 alloy from semi-solid state
EN
Purpose: The work presents a new method to produce cellular metallic material by pressing the alloy in the thixotropic semi-solid state into a layer of space holder particles, which are removed from the product after the forming operation. Design/methodology/approach: It is investigated the influence of the thixoforming temperature and the size of space holder particles, in the ability of penetration of the slurry in the porous preform as well as the structure of the obtained porous material (general aspect, quantitative and qualitative characterization of porosity microstructure of cells walls and density of the product). Findings: Cylindrical samples presenting three different ranges of porosity were produced. The cellular material obtained contains open porosity, being characterized as sponge. Products were analyzed by tomography and metallographic techniques. Results show that the proposed process is able to produce acceptable porous material, in a simple and low cost technique. The quality of the product depends rather on the processing temperature than on the size of space holder particles. Low liquid fraction in the thixotropic slurry can lead to incomplete infiltration and deformation of the preform. In the analyzed conditions influence of the size of space holder particles could be observed neither in the processing ability nor in the quality of the product. Density of produced porous material increases as processing temperature increases, due to the increase of cells walls thickness. Research limitations/implications: The investigated process is suitable only for alloys with a significant solidification range. Practical implications: The new method to produce cellular metals can represent energy savings and is highly operational when compared to conventional methods based on liquid infiltration, since lower temperatures are involved and no need of liquid handling is required. Originality/value: the process proposed is a new one; no techniques based on thixoforming of the alloy into porous preforms are known so far.
3
Content available remote Production of cellular A2011 alloy from semi-solid state
EN
Purpose: The work investigates a new method to produce cellular A2011 alloy and analyses the influence of processing parameters on the quality of the product. Design/methodology/approach: The proposed process involves pressing the alloy in the thixotropic semi solid state into a layer of space holder particles, which are removed after the forming operation. It is investigated the influence of the thixoforming temperature and the size of space holder particles, in the ability of penetration of the slurry in the porous pre-form as well as the structure of the obtained porous material. Products were analyzed by tomography and metallographic techniques. Findings: The proposed process showed to be able to produce acceptable porous material in a simple and low cost technique; the cellular material produced was characterized as sponge, as presented open and interconnected porosity. The quality of the product depends rather on the processing temperature than on the size of space holder particles. Low liquid fraction in the thixotropic slurry can lead to incomplete infiltration and deformation of the pre-form. In the analyzed conditions influence of the size of space holder particles could be observed neither in the processing ability nor in the quality of the product. Density of produced porous material increases as processing temperature increases, due to the increase of cells walls thickness. Research limitations/implications: The investigated process is suitable only for alloys with a significant solidification range. Practical implications: The new method to produce cellular metals can represent energy savings and is highly operational when compared to conventional methods based on liquid infiltration, since lower temperatures are involved and no need of liquid handling is required. Originality/value: The process proposed is a new one; no techniques based on thixoforming of the alloy into porous pre-forms are known so far.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.