Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  metale nanokrystaliczne
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Manufacture of nanocrystalline metals by machining processes
EN
Purpose: The paper shows how extremely high-speed micromachining can be used as a method for manufacturing nanocrystalline feedstock from machining chips. The feedstock can be used in processes such as cold spraying that improve the surface characteristics of engineering components. Design/methodology/approach: The design and methodology relies on the construction and the correct operation of a micromachining operation that produces functional feedstock material that is produced from machining chips at spindle speeds in excess of half-a-million revolutions per minute. The approach provides an economical way of producing metal nanocrystals. Findings: The findings of the research show that intense plastic shearing of metals produces nanosized crystals in the range 30 nm to 150 nm. The crystals produced can be used to create superior funtional coatings on engineering components. Research limitations/implications: The research conducted implies that a cost effective and environmentallybenign process can produce metal nanocrystals. The limitations of the research are currently restricted to cold spraying of funtional surfaces. Practical implications: The practical implications of the research show that high-speed micromachining can be used as a method of producing nanocrystalline feedstock that can be used in a variety of secondary manufacturing processes in addition to cold spraying. Originality/value: The paper demonstrates the originality of using well-established machining processes for producing nanocrystalline metals. The paper describes how machining at extremely high speeds can be achieved to produce material that can be used to strengthen and harden engineering components.
2
Content available remote Description of viscoplastic flow accounting for shear banding
EN
The subject of the study is concerned with ultra fine grained (ufg) and nanocrystalline metals (nc-metals). Experimental investigations of the behaviour of such materials under quasistatic as well as dynamic loading conditions related with microscopic observations show that in many cases the dominant mechanism of plastic strain is multiscale development of shear deformation modes – called shear banding. The comprehensive discussion of these phenomena in ufg and nc-metals is given in [1], [2] and [3], where it has been shown that the deformation mode of nanocrystalline materials changes as the grain size decreases into the ultrafine region. For smaller grain sizes (d < 300 nm) shear band development occurs immediately after the onset of plastic flow. Significant strain-rate dependence of the flow stress, particularly at high strain rates was also emphasized. Our objective is to propose a new description of viscoplastic deformation, which accounts for the observed shear banding. Viscoplasticity model proposed earlier by P e r z y n a [4], [5] was extended in order to describe the shear banding contribution. The shear banding contribution function, which was introduced formerly by P e c h e r s k i [6], [7] and applied in continuum plasticity accounting for shear banding in [8] and [9] as well as in [10] and [11] plays pivotal role in the viscoplasticity model. The derived constitutive equations were identified and verified with application of experimental data provided in paper [2], where quasistatic and dynamic compression tests of ufg and nanocrystalline iron specimens of a wide range of mean grain size were reported. The possibilities of the application of the proposed description for other ufg and nc-metals are discussed.
PL
Przedmiotem studiów są drobnoziarniste oraz nanokrystaliczne metale. Badania doświadczalne zachowania się takich materiałów w warunkach obciążeń quasistatycznych oraz dynamicznych, w powiązaniu z obserwacjami mikroskopowymi, wykazują, że w wielu wypadkach dominującym mechanizmem odkształcenia plastycznego jest wieloskalowy rozwój form ścinania – zwany zwojem pasmami ścinania. Wyczerpująca dyskusja tych zjawisk zawarta jest w [1], [2] i [3], gdzie wykazano, że forma odkształcenia w materiałach drobnoziarnistych zmienia się, kiedy rozpatrujemy materiały o coraz mniejszym ziarnie. Dla materiałów o średniej wielkości ziarna mniejszej niż 300 nm obserwuje się rozwój pasm ścinania zaraz po inicjacji odkształcenia plastycznego. Podkreślono także znaczący wpływ prędkości odkształcenia na naprężenie płynięcia. Naszym celem jest propozycja nowego opisu odkształcenia lepkoplastycznego, w którym uwzględnia się udział obserwowanego rozwoju pasm ścinania. Model lepkoplastyczności proponowany wcześniej przez P e r z y n e [4], [5] został rozszerzony z wykorzystaniem opisu udziału pasm ścinania. Podstawową rolę w proponowanym modelu lepkoplastyczności odgrywa funkcja udziału pasm ścinania wprowadzona przez P e c h e r s k i e g o [6], [7] i zastosowana w kontynualnej teorii plastyczności z udziałem pasm ścinania w [8] i [9] oraz w [10] i [11]. Dokonano identyfikacji oraz weryfikacji wyprowadzonych równań konstytutywnych z zastosowaniem danych doświadczalnych otrzymanych w testach quasistatycznego i dynamicznego ściskania dla serii próbek wykonanych z drobnoziarnistego i nanokrystalicznego żelaza o szerokim zakresie średniej wielkości ziarna [2]. Przedyskutowano możliwości zastosowania proponowanego opisu do innych metali o budowie drobnoziarnistej i nanokrystalicznej.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.