This paper presents the application of Kolmogorov-Arnold Networks (KAN) in classifyingmetal surface defects. Specifically, steel surfaces are analyzed to detectdefects such as cracks, nclusions, patches, pitted surfaces, and scratches. Drawingon the Kolmogorov-Arnold theorem, KAN provides a novel approach compared to conventional multilayer perceptrons (MLPs), facilitatingmore efficient function approximation by utilizingspline functions. The results show that KAN networks can achieve better accuracy than convolutional neural networks (CNNs) with fewer parameters, resulting in faster convergence and improved performance in image classification.
PL
W niniejszej pracy przedstawiono zastosowanie sieci Kolmogorov-Arnold (KAN) w klasyfikacji defektów powierzchni metali. W szczególności badane są powierzchnie stali pod kątem wykrywania takich wad, jak pęknięcia, wtrącenia, łaty, powierzchnie z wżerami i zarysowania. Sieci KAN, oparte na twierdzeniu Kolmogorova-Arnolda, stanowią innowacyjną alternatywę dla tradycyjnych wielowarstwowych perceptronów (MLP), umożliwiając efektywniejsze aproksymowanie funkcji poprzez zastosowanie funkcji sklejanych. Wyniki badań wskazują, że sieci KAN mogą osiągać lepszą dokładność niż konwolucyjne sieci neuronowe (CNN) przy mniejszej liczbie parametrów, co skutkuje szybszą zbieżnością i lepszymi wynikami w klasyfikacji obrazów.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.