Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  mesocosm
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Waters provide essential needs both for human societies as well as natural ecosystems. Floating solar PV (FPV) applications on water bodies are currently in strong demand worldwide. Floating solar PV system is a new concept in renewable energy with the solar plants by harnessing available water surface, such in dams, lakes, and other water bodies. Although the floating solar PV industry is becoming more and more popular, the study on the biological, chemical, and physical properties effects of using FPV cover on natural water coverage – especially in tropical countries – has not been widely carried out yet. This paper aimed to evaluate the effect of floating solar PV on temperature, DO (dissolved oxygen), TDS (total dissolved solids), total phosphorus concentration, and chlorophyll-a concentration using mesocosm experiments to understand the biological, chemical, and physical process under closed environment. The experiment was conducted in a natural water body, Mahoni Lake, in which a total amount of 7 water samples were collected from each mesocosms. The results show that the floating solar PV reduces the average temperature, DO, conductivity, TDS, and chlorophyll-a concentration changes (p-value < 0.05); and the floating solar PV does not directly reduce the average total phosphorus concentration due to high probability of thermal stratification (p-value > 0.05).
EN
Rawapening Lake is one of Indonesia’s national priority lakes that is experiencing environmental problems which are urgently required to be solved due to its functions. The decline in the environmental quality of Rawapening Lake includes sedimentation, water pollution and excess of nutrients, especially Phosphorus (P) and Nitrogen (N) into the lake that induced uncontrolled growth of aquatic plants, one of which is water hyacinth (Eichhornia crassipes (Mart.) Solms). Many activities had been done to reduce the covering of water hyacinth in Rawapening Lake that tends to increase by the time, but no significant result has been achieved. Therefore, this research was conducted in order to study the growth rate of water hyacinth with mesocosm in Rawapening Lake as a baseline to develop suitable management. There were three different sites, namely: Site I in the floating net cage area (FNCA), Rowoboni Village, Site II in the natural area of Bejalen Village which is far from the aquaculture sites, and Site III in the upper reaches of the Tuntang river, Asinan Village. The research was performed in November-December 2019 with the measurements of growth rate, addition number clump and water hyacinth covering every week. The experiment was conducted in the 1 x 1 meter mesocosm, with three replication in every site. In every mesocosm water hyacinth with similar initial weight of 160 grams and number of leaves 6-7 strands were grown in the mesocosm. On day 7 (H7) the average wet weight of water hyacinth increased by 201%. In the fourth week (H28) the average wet weight of water hyacinth increased by 788% compared to the initial weight when planted. The highest relative growth rate (RGR) value of water hyacinth was at site III (7.26%/ day), followed by Site I (7.03%/day), and Site II (6.40%/day), respectively. The doubling time (DT) value of water hyacinth at the site I was 9.9 day, site II – 10.8 day, and site III – 9.6 day. One clump of water hyacinth weighing 160 grams was able to cover 1 m2 of mesocosm within 21 days. On the basis of these results, to manage water hyacinth blooms one has to consider its growth rate.
EN
Submerged aquatic vegetation (SAV) is often difficult to restore due to their low seedling survival rates. Therefore, we hypothesized that the elodeid macrophytes serve as effective “nursery” areas to promote success for seedlings of other SAV. However, the high density of the elodeid community may inhibit the establishment of other SAV. An experiment was conducted to explore this “nursery effect” as a restoration approach to increase the success of seed restoration. Two elodeid species were pre-planted into mesocosms to create three levels of “nursery beds” i.e., bare, sparse (approx. 100 g m-2) and dense (approx. 200 g m-2). Seeds of Vallisneria spiralis were then placed into these beds to test the seed germination and growth of V. spiralis seedlings. After three months, seed germination was lower in the bare treatment than in the sparse and dense treatments. The growth of V. spiralis seedlings was greater in the sparse treatment than in the bare and dense treatments. These results revealed that the established elodeid bed had a positive effect on the seed restoration of V. spiralis but that the restoration efficiency was significantly reduced by the high-density cover of the elodeid community.
EN
Ocean acidification (OA) is one of the global issues caused by rising atmospheric CO2. The rising pCO2 and resulting pH decrease has altered ocean carbonate chemistry. Microbes are key components of marine environments involved in nutrient cycles and carbon flow in marine ecosystems. However, these marine microbes and the microbial processes are sensitive to ocean pH shift. Thus, OA affects the microbial diversity, primary productivity and trace gases emission in oceans. Apart from that, it can also manipulate the microbial activities such as quorum sensing, extracellular enzyme activity and nitrogen cycling. Short-term laboratory experiments, mesocosm studies and changing marine diversity scenarios have illustrated undesirable effects of OA on marine microorganisms and ecosystems. However, from the microbial perspective, the current understanding on effect of OA is based mainly on limited experimental studies. It is challenging to predict response of marine microbes based on such experiments for this complex process. To study the response of marine microbes towards OA, multiple approaches should be implemented by using functional genomics, new generation microscopy, small-scale interaction among organisms and/or between organic matter and organisms. This review focuses on the response of marine microorganisms to OA and the experimental approaches to investigate the effect of changing ocean carbonate chemistry on microbial mediated processes.
5
EN
According to global inventories the agricultural field production contributes in a significant measure to increase of concentration of greenhouse gases (CO2, N2O, CH4) in the atmosphere, however their estimated data of emissions of soil origin differ significantly. Particularly estimates on nitrogen-oxides emissions show a great temporal and spatial variability while their formations in microbial processes are strongly influenced by biogeochemical and physical properties of the soil (eg microbial species, soil texture, soil water, pH, redox-potential and nutrient status) and land use management through the impact of the application of natural and synthetic fertilisers, tillage, irrigation, compaction, planting and harvesting. The different monitoring systems and inventory models were developed mostly from atmospheric chemistry point of view and little comprehensive data exist on the processes related to GHG emissions and their productions in agricultural soils under ecological conditions of Central Europe. This paper presents the new results of a project aimed elaboration of an experimental system suitable for studying relationships between the production and emission of greenhouse gases and plant nutrition supply in agricultural soils under Hungarian ecological conditions. The system was based on a long-term fertilisation field experiment. Mesocosm size pot experiments were conducted with soils originating from differently treated plots. The production of CO2 and N2O was followed during the vegetation period in gas traps built in 20 cm depth. Undisturbed soil columns were prepared from the untreated side parcels of the field experiment and the production of CO2 and N2O was studied at 20, 40 and 60 cm depth. A series of laboratory microcosm experiments were performed to clarify the microbial and environmental effects influencing the gas production in soils. The CO2 and N2O were determined by gas chromatography. The NOx was detected by chemiluminescence method in headspace of microcosms. In the mesocosm and soil columns experiments influence of plant nutrition methods and environmental factors was successfully clarified on seasonal dynamics and depth profile on CO2 and N2O productions. The database developed is suitable for estimating CO2 and N2O emissions from agricultural soils.
PL
Światowa produkcja rolnicza przyczynia się znacząco do zwiększenia stężenia gazów cieplarnianych (CO2, N2O, CH4) w atmosferze, jednak dane szacunkowe dotyczące tych emisji pochodzących z gleby różnią się istotnie. W szczególności dotyczy to tlenków azotu, których emisja wykazuje dużą zmienność czasową i przestrzenną, podczas gdy ich tworzenie w procesach mikrobiologicznych jest silnie uzależnione od biogeochemicznych i fizycznych właściwości gleby (np. gatunków mikroorganizmów, struktury gleby, wód glebowych, pH, potencjałów redoks i substancji odżywczych) oraz wpływu zarządzania gruntami poprzez stosowanie nawozów naturalnych i sztucznych, rodzaju uprawy, nawadniania, sadzenia i zbiorów. Różne systemy monitorowania i modele inwentaryzacyjne zostały opracowane głównie z punktu widzenia chemii atmosferycznej. Istnieje niewiele całościowych danych dotyczących emisji gazów cieplarnianych i ich produkcji w glebach rolniczych w warunkach ekologicznych Europy Środkowej. Przedstawiono nowe wyniki prac realizowanych w ramach projektu dotyczącego opracowania systemu doświadczalnego, odpowiedniego do badania relacji między produkcją i emisją gazów cieplarnianych a nawożeniem roślin w węgierskich warunkach ekologicznych. Eksperyment oparty był na długotrwałym doświadczeniu polowym. W doświadczeniach wykorzystano gleby pochodzące z różnych działek. W okresie wegetacyjnym produkcja CO2 i N2O była śledzona za pomocą pułapek gazowych umieszczonych na głębokości 20 cm. W celu wyjaśnienia wpływu procesów mikrobiologicznych i środowiskowych na produkcję gazu w glebie wykonano szereg mikroskalowych doświadczeń laboratoryjnych. Stężenia CO2 i N2O oznaczano metodą chromatografii gazowej. Stężenia NOx w górnych obszarach badanych mikrosystemów oznaczano metodą chemiluminescencji. W mezoskali i w kolumnach glebowych eksperymenty dotyczące wpływu metod dożywiania roślin i czynników środowiskowych z powodzeniem wyjaśniały dynamikę zmian sezonowych i produkcję CO2 i N2O w profilu głębokościowym. Opracowana baza danych jest odpowiednia do oszacowania emisji CO2 i N2O z gleb rolnych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.