Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  mel-frequency cepstral coefficient
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
With an ever-increasing emphasis on security and the new dimensions in security challenges facing the world today, the need for automated personal identification/verification system based on multimodal biometrics has increased. This paper addresses the issue of multiple biometric fusion to enhance the security of recognition. The paper utilizes iris, speech,and signature for the novel fusion. A segregated classification mechanism for each biometric is also presented. The fusion is done on the base of features extracted at the time of individual classification of biometrics. Different feature extraction algorithms are applied for different biometrics. The paper has utilized 2-Dimensional Principle Component Analysis (2DPCA) for Iris, Scale Invariant Feature Transform (SIFT) for signature and Mel-frequency cepstral coefficients for speech biometric. This paper utilizes Genetic Algorithm for the optimization of the evaluated features. The classification is done using Artificial Neural Network (ANN).
PL
W związku z ciągłym wzrostem wymagań dotyczących bezpieczeństwa i nowymi wyzwaniami stojącymi dzisiaj w tym zakresie przed światem istnieje potrzeba tworzenia ststremów wykorzystujących biometrię multimodalną do automatycznej identyfikacji/weryfikacji osób. Artykuł opisuje problem zastosowania multimodalnej fuzji biometrycznej do poprawy bezpieczeństwa rozpoznawania osób. Do nowej fuzji wykorzystano tęczówkę, mowę i podpis. Zaprezentowano oddzielny mechanism dla każdego czynnika biometrycznego. Fuzję przeprowadzono wykorzystując cechy wybrane w danej chwili czasu indywidualnie dla każdego czynnika. Dla różnych czynników zastosowano różny algorytm wyboru cech biometrycznych. Zastosowano 2- wymiarową analizę podstawowych składników (ang. 2-Dimensional Principle Component Analysis - 2DPCA) dla tęczówki, skaloniezmiennicze przekształcenie cech (ang. Scale Invariant Feature Transform - SIFT) dla podpisu oraz parametry melcepstralne (ang. Mel-Frequency Cepstral Coefficients) dla mowy. W artykule wykorzystano metodę Algorytmów Genetycznych do optymalizacji oceny poszczególnych cech. Klasyfikację przeprowadzono wykorzystując sztuczne sieci neuronowe.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.