Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  mechanika statystyczna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Celem niniejszego opracowania jest przedstawienie szczegółowych równań dyfuzji wieloskładnikowej, wyprowadzonych w oparciu o mechaniczną teorię dyfuzji wieloskładnikowej. Porównano różne postacie równań definiujących siły napędowe dyfuzji wieloskładnikowej (uogólnione równania Maxwella-Stefana i Ficka-Onsagera). Przedstawiono również inne teorie dyfuzji (termodynamika nierównowagowa, mechanika statystyczna).
EN
The aim of the study is to present in detail the constitutive equations of multicomponent diffusion derived on the basis of the mechanical theory of multicomponent diffusion. Various formulations of the diffusion driving force have been compared (generalized Maxwell-Stefan, generalized Fick-Onsager equations). Other theories of the multicomponent diffusion (nonequilibrium thermodynamics, statistical mechanics) have been also discussed.
2
Content available Why must we work in the phase space?
EN
We are going to prove that the phase-space description is fundamental both in the classical and quantum physics. It is shown that many problems in statistical mechanics, quantum mechanics, quasi-classical theory and in the theory of integrable systems may be well-formulated only in the phase-space language. There are some misunderstandings and confusions concerning the concept of induced probability and entropy on the submanifolds of the phase space. First of all, they are restricted only to hypersurfaces in the phase space, i.e., to the manifolds of the defect of dimension equal to one. But what is more important, it was assumed there that the phase-space geometry was metrical-Euclidean and the resulting metric geometry of the microcanonical ensemble was obtained by the reduction of the primary Euclidean geometry to the corresponding submanifold. But it is well-known that the phase-space manifold has no natural metric geometry and that all concepts to be used must be of symplectic origin. Otherwise they are just accidental or artificial. So, instead we show that even if the configuration space is endowed with some metric, then in general the true geometry of submanifolds in the corresponding cotangent bundle (phase-space) is of different origin which has nothing to do with the mentioned configuration space Riemannian geometry, instead it is of purely symplectic origin. And this is sufficient to constructing microcanonical ensemble and entropy concepts. In any case, the purely symplectic phase-space geometry is sufficient to obtain everything within the completely metric-free language.
PL
Chcemy wykazać, że opis zjawisk mechanicznych oparty na pojęciu przestrzeni fazowej jest fundamentalny zarówno z klasycznego jak i kwantowego punktu widzenia. Pokazujemy, że liczne problemy mechaniki statystycznej, teorii kwantów i mechaniki quasiklasycznej oraz teorii układów całkowalnych mogą być dobrze sformułowane wyłącznie w języku symplektycznej przestrzeni fazowej. Istnieje mnóstwo nieporozumień czy wręcz błędów dotyczących pojęcia prawdopodobieństwa warunkowego i entropii w przypadku podrozmaitości przestrzeni fazowej. Przede wszystkim są one zazwyczaj definiowane dla przypadku powierzchni o defekcie wymiaru jeden. Co jednak dużo ważniejsze, zwykle zakłada się, że przestrzeń fazowa ma jednocześnie metryczną geometrię Euklidesową. Geometria metryczna podrozmaitości, używana w konstrukcji zespołu mikrokanonicznego, jest otrzymywana jako redukcja, ograniczenie pierwotnej geometrii Euklidesowej. Wiadomo jednak, że rozmaitość przestrzeni fazowej nie ma żadnej „wrodzonej” geometrii metrycznej i że wszystkie podstawowe pojęcia, wyjąwszy dynamikę konkretnych modeli, muszą mieć czysto symplektyczną genezę. W przeciwnym wypadku są one przypadkowe lub wręcz sztuczne. Zatem, nawet jeśli wyjściowa przestrzeń konfiguracyjna ma zadaną geometrię typu metrycznego, to na ogół właściwa geometria podrozmaitości w wiązce ko-stycznej, przynajmniej ta istotna dla pojęć statystycznych, nie jest związana z metryką konfiguracyjną i ma czysto symplektyczną genezę. I to wystarcza dla skonstruowania pojęcia zespołu mikrokanonicznego i entropii. W każdym razie, czysto symplektyczna geometria przestrzeni fazowej wystarcza do otrzymania pojęć mechaniki statystycznej w obrębie języka całkowicie niemetrycznego. W przypadku, gdy przestrzeń konfiguracyjna jest Euklidesowa, implikowane przez metrykę pojęcia statystyczne pokrywają się z symplektycznymi. W ogólnym wypadku nie musi tak być. Pokazujemy, że pojęcia te dadzą się wprowadzić w języku czysto symplektycznym, niezależnym od metryki konfiguracyjnej. Dotyczy to także uogólnionych rozkładów mikrokanonicznych.
EN
In this work, the Cosserat medium is analyzes as a set of atoms. These atoms are under the action of a mechanical load. The statistical analysis is preceded by a description of a single atom using classical mechanics and quantum mechanics. The behavior of the atoms in the field generated by mechanical change of the interatomic distance is shown as a phenomenon which can explain the Cosserat mechanics in a continuum.
4
Content available remote Spojrzenie fizyka na hipotezę Riemanna
PL
Między matematyką a fizyką istnieje wiele związków. W pierwszej części Analizy Krzysztofa Maurina [63, str. 25] możemy przeczytać zdanie: „Niektórzy fizycy uważają matematykę za język fizyki”. Wiele działów matematyki powstało z potrzeby sformalizowania i uściślenia rachunków przeprowadzanych przez fizyków (na przykład teoria przestrzeni Hilberta, teoria dystrybucji, geometria różniczkowa). W niniejszym artykule przedstawimy sytuację odwrotną, gdy sławny problem matematyczny uda się być może udowodnić metodami fizyki matematycznej albo obalić doświadczalnie. Chodzi o hipotezę Riemanna, sformułowaną w 1859 roku, w słynnym ośmiostronicowym artykule Riemanna. Znaczenie hipotezy Riemanna wynika stąd, że zapewne kilka tysięcy twierdzeń zaczyna się od słów „załóżmy prawdziwość hipotezy Riemanna, wtedy...”. W pracy zebraliśmy wiele przykładów problemów fizycznych związanych z hipotezą Riemanna. W XIX wieku wszystkie te związki nie były znane, jednak Riemann wierzył, że odpowiedź na pytania matematyczne można uzyskać ze strony fizyki. Podobno Riemann sam przeprowadzał doświadczenia fizyczne, aby sprawdzić swoje twierdzenia.
5
Content available remote Indeterminizm obliczeniowy w złożonych układach społecznych
PL
Wykład został wygłoszony na XLII Zjeździe Fizyków Polskich, który odbył się w Poznaniu w dniach 8-13 września 2013 roku
EN
The paper develops a new statistical formulation to calculate the thermal diffusivity, binary diffusion coefficient, thermal diffusion factor, viscosity and thermal conductivity of gas mixtures with non-equilibrium statistical mechanics. For the analytical calculation of transport properties, the models of Kihara and Chapman-Cowling (up to the third order) have been used. Thermal transport properties for mixtures involving carbon monoxide, helium, argon, xenon and krypton have been computed with the new formulation in this paper. New mixing rules for the calculation of transport properties for mixtures are developed. Close agreement is obtained between the analytical results (based on statistical mechanics) and experimental data. The results exhibit comparable or better accuracy than previous methods, while providing new insight regarding the detailed statistical mechanisms of intermolecular interactions, as they contribute to the transport property variations with temperature.
EN
The paper features the mathematical model of computing equilibrium and nonequilibrium ther-mophysical properties of state in the liquid and gas domain for pure refrigerants and mixtures with the help of classical thermodynamics and statistical thermodynamics. The paper features all important contributions (translation, rotation, internal rotation, vibration, intermolecular potential energy and influence of electron and nuclei excitation). To calculate the thermodynamic properties of real fluid, the models on the basis of Lennard-Jones intermolecular potential were applied. To calculate the thermodynamic properties of real fluid by means of classical thermodynamics, we used the Tillner-Roth-Watanabe-Wagner (TRWW) equation on the base of Helmholtz type. We have developed a mathematical model for the calculation of all equilibrium and nonequilibrium thermodynamic functions of state for pure refrigerants. The analytical results obtained by statistical thermodynamics are compared with the TRWW model and show a relatively good agreement.
EN
The paper deals with the Lennard-Jones fluid and presents the mathematical model of computating thermodynamic functions of state in the liquid and gas domain by means of statistical thermodynamics. To calculate the thermodynamic properties of a real fluid, we used the Johnson-Zollweg-Gubbins model based on the modified Benedict-Webb-Rubin equation of state, the Chunxi-Yigui-Jiufang equation of state based on the simple perturbation theory, and the complex Tang-Tong-Lu model based on the solution of the Ornstein-Zernike equation obtained by means of the perturbation theory. The analytical results are compared with the thermodynamical data, and with the results obtained from classical thermodynamics.
EN
The paper deals with a mathematical model for calculation of the thermodynamic properties of solids. The mathematical model, based upon statistical thermodynamics, is designed to assess the impact of atom vibration, electron excitation and the effect of intermolecular energy between atoms in a crystal. To calculate the configuration integral, the perturbation theory was used with the Van der Waals model as perturbation. The temperature-variable coefficients were introduced into the model presented in this paper. Finally, the model was compared with the experimental data proving a good matching.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.