Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  mechanika numeryczna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The paper discusses the issue of modelling the heating and cooling processes of T-pipes in a power plant pipeline in the start-up conditions of a boiler. The main purpose of this work is the description of the mechanical behaviour of power plant components working under mechanical and thermal loading and validation of the computer modelling methods. Design/methodology/approach: The FEM modelling has been used to describe the local stress-strain behaviour of the chosen component. Findings: The reasons for the presence of high and variable in time temperature gradients in the components of the main steam pipeline include, among other things, variable values of the coefficient of heat transfer between the pipeline material and the medium flowing inside it, which, at this stage of boiler operation, may change its state. Unsteady operation of a pipeline, especially in case of subsequent boiler start-ups, may induce thermal stresses which exceed the values of allowable stress in components of complex shapes. Research limitations/implications: The possibility of applying the durability criteria currently assumed in standards still requires justification and confirmation in laboratory and industrial conditions to be closer to the real components behaviour. In such situation the presented analysis is the part of the complex investigation method which main purpose is increasing accuracy of the TMF process description and thermo-mechanical life assessment. Practical implications: The calculations carried out may constitute a basis for developing a material test parameters which would bring closer the fatigue conditions appearing locally in the analysed components. The method of stress-strain behaviour analysis used in the paper could be useful in the practical cases when the real components mechanical behaviour would be analysed. Originality/value: The main value of this paper is the own method of the mechanical behaviour analysis of the power plant component. This method includes the temperature fields analysis taking into account the boundary conditions based on the operation parameter data and the thermoplastic material model. The material stress-strain behaviour has been treated as the local phenomenon, that could be modelled by FEM.
EN
Purpose: This paper presents the application of artificial neural networks for mechanical properties prediction of structuralal steels after quenching and tempering processes. Design/methodology/approach: On the basis of input parameters, which are chemical composition, parameters of mechanical and heat treatment and dimensions of elements, steels’ mechanical properties : yield stress, tensile strength stress, elongation, area reduction, impact strength and hardness are predicted. Findings: Results obtained in the given ranges of input parameters indicates on very good ability of artificial neural networks to values prediction of described mechanical properties for steels after quenching and tempering processes. The uniform distribution of descriptive vectors in all, training, validation and testing sets, indicates on good ability of the networks to results generalisation. Practical implications: Artificial neural networks, created during modelling, allows easy prediction of steels properties and allows the better selection of both chemical composition and the processing parameters of investigated materials. It’s possible to obtain steels, which are qualitatively better, cheaper and more optimised under customers needs. Originality/value: The prediction possibility of the material mechanical properties is valuable for manufacturers and constructors. It allows the preservation of customers quality requirements and brings also measurable financial advantages
3
Content available remote Thermo-mechanical fatigue conditions of power plant components
EN
Purpose: The main purpose of this work is the description of the mechanical behaviour of power plant components working under mechanical and thermal loading that cause the thermo-mechanical fatigue fracture in selected areas of the component surfaces. Design/methodology/approach: The computer modelling has been used to describe the local stress-strain behaviour of the chosen component. Findings: The values of variable in time temperature strains and stresses in selected points of the power plant header were determined. The points were located at the edges of holes through which water steam is supplied and carried away, where under use conditions the presence of cracks can be observed. That stresses and mechanical strains caused by the influence of a non-uniform temperature field may be significantly higher in comparison with the stresses and strains caused by the pressure inside the analysed component. Tensile thermal stresses of high values are created especially under conditions of sudden cooling during unsteady work of a power unit. Research limitations/implications: The possibility of applying the durability criteria currently assumed in standards still requires justification and confirmation in laboratory and industrial conditions to be closer to the real components behaviour. In such situation the presented analysis is the part of the complex investigation method which main purpose is increasing accuracy of the TMF process description and thermo-mechanical life assessment. Practical implications: The calculations carried out may constitute a basis for developing a material test parameters which would bring closer the fatigue conditions appearing locally in the analysed components. The method of stress-strain behaviour analysis used in the paper could be useful in the practical cases when the real components mechanical behaviour would be analysed. Originality/value: The main value of this paper is the own method of the mechanical behaviour analysis of the power plant component. This method includes the temperature fields analysis taking into account the boundary conditions based on the operation parameter data and the thermoplastic material model. The material stress-strain behaviour has been treated as the local phenomenon, that could be modelled by FEM.
4
Content available remote Simplified and advanced models of a valve system used in shock absorbers
EN
Purpose: The aim of this paper is to develop a model of a valve system applicable for strain and stress prediction. Design/methodology/approach: The analytical and numerical approaches are presented to provide an overview for available methods and prediction accuracy. Findings: An equivalent numerical model of a disc valve system of different complexity was developed and discussed. Research limitations/implications: It is important to provide a model functionality allowing for calculation of disc stacks supported by a coil spring and stack settings having the opening limiter. Disc stack stress and opening characteristics vs. applied pressure may be determined with simplified analytically derived model and full 2D model including almost all significant forces and moments in a stack of circular plates. An advantage of a simplified disc stack model is possibility of its implementation in an environment supporting matrix operations, e.g. Matlab. Practical implications: A valve system has to withstand the cyclic pressure load across the piston. The number of discs, their diameters and thicknesses directly affect durability of a valve system. Damper force and valve durability expressed in life-cycles are the optimization criteria considering during selection and tuning of a valve system. Originality/value: A new valve system was developed in two versions, i.e. simplified and advanced. The model allows durability prediction at the design stage reducing the testing costs of low-performance valve systems.
5
Content available remote Dynamical flexibility of the free-free damped rod in transportation
EN
Purpose: of this thesis is derivation of dynamical flexibility of the free-free rod system in transportation. The well-known problem of dynamical analysis of systems in rotational transportation was developed in this work to systems with taking into consideration damping forces. Design/methodology/approach: The dynamical flexibility method was used to analysis of the free-free rod’s vibrations. Mathematical models derived in previous articles were used to derivation of the dynamical flexibility. Considerations were done by the Galerkin’s method. Findings: There were considered systems in rotational motion treated in this thesis as main transportation. Dynamical characteristics in form of dynamical flexibility as function of frequency and mathematical models were presented in this work. Research limitations/implications: Analyzed systems were simple linear homogeneous not supported rods. Working motion was limited to plane rotational motion. Future works would consider complex systems and nonlinearity. Practical implications: of derived dynamical characteristics can easily support designing process and can be put to use in stability analysis and assigning stability zones. Thank to derived mathematical models the numerical applications can be implemented and some calculations can be automated. Originality/value: Analyzing models are rotating flexible free-free rods with taking into consideration the damping forces.
EN
Purpose: This paper presents Neuro-Lab. It is an authorship programme, which use algorithms of artificial intelligence for structural steels mechanical properties estimation. Design/methodology/approach: On the basis of chemical composition, parameters of heat and mechanical treatment and elements of geometrical shape and size this programme has the ability to calculate the mechanical properties of examined steel and introduce them as raw numeric data or in graphic as influence charts. Possible is also to examine the dependence among the selected steel property and chosen input parameters, which describes this property. Findings: There is no necessity of carrying out any additional material tests. The results correlations between calculated and measured values are very good and achieve even the level of 98%. Practical implications: Presented programme can be an effective replace of the real experimental methods of properties determination in laboratory examinations. It can be applied as the enlargement of experimental work. Possible is also the investigation of models coming from new steel species, that wasn’t produced yet. Originality/value: The ability of the mechanical properties estimation of the ready, or foreseen to the use, material is unusually valuable for manufacturers and constructors. This signifies the fulfilment of customer’s quality requirements as well as measurable financial advantages for material manufacturers.
7
Content available remote Biomechanical characterization of the balloon-expandable slotted tube stents
EN
Purpose: The aim of the presented work was determination of the biomechanical characteristics of the vascular stent made of stainless steel (Cr-Ni-Mo) and Co-Cr-W-Ni alloy. Additionally, in order to compare obtained results, an experimental analysis of the stent made of stainless steel was carried out. Design/methodology/approach: In order to determine the strength characteristics of the analyzed stent the finite element method was applied. Geometrical model of the vascular stent, which was meshed with the use of the SOLID95 element, was worked out. Selection of the finite element was conditioned by large strains that occur during angioplastic procedure. The established boundary conditions imitated the phenomena during the balloon expansion in real conditions. Findings: The result of the analysis was determination of relationship between equivalent stresses and strains in the individual regions the stent in the function of the diameter’s change (d = 1.20 - 4.00 mm) caused by expanding pressure. Analysis of the obtained results indicates diverse distribution of stresses and strains in the stent depending on the applied biomaterial. Research limitations/implications: The obtained results of the biomechanical analysis of the coronary stent are valuable information for correct design of the geometry and mechanical properties of the applied metallic biomaterials. Strain analysis of the stent indicates that in order to limit a surface reactivity of the stent in blood environment, a deformable surface layer must be applied. Originality/value: Results of the numerical analysis indicate that mechanical properties of the metallic biomaterials used to manufacture the analyzed vascular stent were selected correctly. The correctness of the selection (mechanical properties of the metallic biomaterials) should be confirmed in in vitro tests realized with the use of the coronary angioplasty set.
EN
Purpose: This paper presents the application of artificial neural networks for mechanical properties prediction of structural steels after heat treatment. Design/methodology/approach: On the basis of such input parameteres, which are the chemical composition, the kind of mechanical and heat treatment and dimensions of elements, mechanical properties, such as strength, impact resistance or hardness are predicted. Findings: Results obtained in the given ranges of input parameters show very good ability of constructed neural networks to predict described mechanical properties for steels after heat treatment. The uniform distribution of descriptive vectors in all, training, validation and testing sets, indicate about the good ability of the networks to results generalisation. Practical implications: Created tool makes possible the easy modelling of described properties and allows the better selection of both chemical composition and the processing parameters of investigated materials. At the same time the obtainment of steels, which are qualitatively better, cheaper and more optimised under customers needs is made possible. Originality/value: The prediction possibility of the material mechanical properties is valuable for manufacturers and constructors. It allows preserving the customers quality requirements and brings also measurable financial advantages.
9
Content available remote Analysis of complex damped longitudinally vibrating systems in transportation
EN
Purpose: of this thesis is dynamical analysis of complex systems in transportation. Analyzed systems are composed of rotatable rods. Transportation was defined as main motion of rods and the overall system. Design/methodology/approach: The dynamical flexibility method is a leading methodology for dynamic analysis of considered systems. For solving equations of motion to dynamical flexibility the Galerkins method was used. Findings: There were considered systems consisted of rods. Rods are rotated first round the origin of global reference frame simultaneously, the attached point and further ones round the end of the previous one. Charts of dynamic characteristics, in a form of dynamic flexibility as function of frequency and mathematical models were shown in this article. Research limitations/implications: All multi-body systems components were simple linear homogeneous rods, the first one as the fixed rod and next ones treated as free-free rods. Transportation was limited to plane rotational motion round the Z axis of global reference frame. Future works would consider complex systems with geometrical and physical nonlinearity. Practical implications: of presented analysis are derivation of multi-body rod systems of dynamic flexibility. Dynamic flexibility can be used in designing process. Presented mathematical models may be used for implementation in numerical applications and for automating some calculations in this type of systems. Originality/value: In the mathematical model the damping forces were taken into consideration and the dynamic flexibility of complex systems was derived.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.