Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  mechanika cieczy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In fluid mechanics, to obtain the multiple solutions in ordinary differential equations is always a concerned and difficult problem. In this paper, a novel RNA genetic algorithm (NRNA-GA) inspired by RNA molecular structure and operators is proposed to solve the parameter estimation problems of the multiple solutions in fluid mechanics. This algorithm has improved greatly in precision and the success rate. Multiple solutions can be found through changing accuracy and search coverage and multi-iterations of computer. At last, parameter estimation of the ordinary differential equations with multiple solutions is calculated. We found that the result has great accuracy and this method is practical.
PL
W artykule zaproponowano nowy algorytm genetyczny NRNA-GA inspirowany strukturą molekularną RNA przeznaczony do rozwiązywania równań z wieloma rozwiązaniami w mechanice cieczy.
2
Content available remote Wytwarzanie emulsji olejowo-wodnej w aparacie helikoidalnym
EN
In this work typical flow structure for liquid-liquid horizontal Couette-Taylor flow was described. The maps of the flow regime were presented. The observed regime was plotted as a function of power input (connected with the rotor rotation) and volume fraction of silicone liquid. The problem of phases dispersion has been discussed.
3
Content available remote Zależność współczynnika szorstkości od kształtu koryta rzecznego
EN
The Chezy formula for steady flow in a uniform symmetric channel with constant slope-friction factor is mathematically examined. First of all a wide rectangular channel and a semicircular channel are compared in respect to mean flow velocity using the Chezy formula with Manning. Chezy and logarithmic law of velocity. Then the inverse Chezy problems, i.e., the determination of the channel shape above the initial level for both a given rating curve of depth-flow discharge and flow area-flow discharge, are posed and the differential-integral equations for their solution are derived. It is shown that in general there is a double solution of the both problems. One solution gives a widening shape with depth and it may be unlimited in water depth, while the other is always upper bounded and it presents a narrowing shape with depth. The condition for the upper bound of the both solutions is given. The solution of the first inverse problem is demonstrated for a rating curve in the form of the product of flow discharge of trapezoid shape above an initial level and an exponential function. It is shown that an exponential reduction of channel flow capacity changes a linear channel sides into convex sides making a cross-section shape wider while an exponential increase of flow - into concave sides, i.e. reducing a section width, which is against the common sense. .The solution of the second inverse problem is presented for a rating curve with the constant slope/mean velocity ratio (m) above an initial level. In particular, it is shown that a solution for a negative value of m exists, which is evidently against the common sense.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.