Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  mean value digital estimator
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Artykuł przedstawia problematykę obliczania wartości oczekiwanej, obciążenia i wariancji cyfrowego estymatora wartości średniej sygnałów przypadkowych. W rzeczywistych sytuacjach pomiarowych estymacja obciążenia i wariancji, wymaga najczęściej wielokrotnego powtarzania eksperymentu pomiarowego. Nie są przy tym sformułowane kryteria dotyczące dokładności prowadzonych oszacowań. Zaprezentowane w pracy wzory omijają problem niejednoznaczności oszacowań i umożliwiają, na podstawie momentów, obliczenie obciążenia i wariancji cyfrowego estymatora wartości średniej sygnałów.
EN
In the paper there is discussed a problem of estimation of the expected value, bias and variance of the mean value digital estimator of random signals. In real measurement tasks the estimation of the variance and bias values requires numerous repetitions of measurement experiments. Moreover, there are no clear criteria of the estimation accuracy. The equations formulated in this paper allow avoiding the problem of the estimation uncertainty and calculating the bias and variance of the digital estimator of the mean value signals basing on the so called moments. The paper is divided into 4 sections. Section 1 contains a short introduction to the issues of this paper. In Section 2 there is given a definition of the digital estimator of the mean value signal. The estimator's expected value is calculated - Eq. (2). On the basis of Eq. (2), the bias caused by quantization is given by Eq. (4). The variance is described by Eq. (7), while the mean square error by Eq. (8). It allows evaluating the consistency estimator. The variance of the mean value Eq. (13) is determined basing on the Widrow theory of quantization Eq. (10-12). In the next section there is presented an example of determining the bias - Eq. (17) and variance Eq. (20) of the mean value digital estimator of a Gaussian signal. The characteristic function of the Gaussian signal is given by Eq. (15). Table 1 presents the result of calculating the mean value variance for varying signal amplitude and increasing A/D resolution. Section 4 summarizes the investigations and presents some concluding remarks. There are discussed applications of the obtained expressions to evaluation of the measurement result uncertainty of the most important signal parameters.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.