Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  maturity modelling
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Maturity modelling was carried out using basin and petroleum system modelling (BPSM) software in the lithologic sections of 17 wells of the Upper Silesian Coal Basin (Poland). The best fit between calculated and measured vitrinite reflectance (VR), porosity and density data was obtained by applying a thickness of eroded sedimentary overburden from 1700 m in the east to 4500 m in the west and relatively low to moderate heat flow values during the maximum late Carboniferous burial. These heat flow values were in the range 50-71 mW/m2
EN
Thermal maturity modelling was carried out in over sixty wells along the SW margin of the East European Craton (EEC). The burial and thermal history modelling of the EEC, using thermochronological data, allowed the construction of burial history maps showing its geological development in the Phanerozoic. These results have proved that the Ordovician and Silurian source rocks occurring at the SW margin of the EEC reached a maximum palaeotemperature in the Palaeozoic, mainly during Devonian-Carboniferous time and at the latest during the Silurian in the most westerly part of this margin, along the Teisseyre-Tornquist Zone. In Mesozoic and Cainozoic time, the Ordovician and Silurian strata generally were subjected to cooling or to very minor heating, certainly below the Variscan level. The maximum burial and maximum temperature of the Ediacaran-Lower Palaeozoic strata were reached during the Early Carboniferous in the Baltic Basin and during the Late Carboniferous in the Lublin area, and even in the Early Permian in the SE corner of the Lublin Basin. Thus, the main period of maturation of organic matter and hydrocarbon generation in the Ordovician and Silurian source rocks was in the Late Palaeozoic (mainly Devonian-Carboniferous) and in the westernmost zone along the Teisseyre-Tornquist line at the end of the Silurian.
EN
Numerical modelling of the Carboniferous–Permian petroleum system in the Polish Basin was carried out using PetroMod software. The Carboniferous source rocks contain organic matter mostly of a humic nature (gas-prone Type III kerogen). Subordinately, only in the Lower Carboniferous deposits, kerogen of algal marine origin and mixed Type II/III kerogen occur. The quantity of dispersed organic matter is variable, but usually below 2% TOC. In the Carboniferous section, a progressive increase in the maturity of organic matter with depth was observed, from approximately 0.5% Rr at the top of the Westphalian in marginal parts of the Carboniferous basin to over 5.0% Rr at the bottom of the Lower Carboniferous in the eastern Fore-Sudetic Homocline. The thermo- genic generation of hydrocarbons continued from the late Westphalian (eastern Fore-Sudetic Homocline and partly Pomerania) throughout the Mesozoic, up to the Late Cretaceous. The advancement of this process is va- riable in different parts of the Carboniferous basin, reaching up to 100% of kerogen transformation in the zones of maximum maturity of organic matter. However, the most intensive periods of gas generation and migration were the Late Triassic and the Late Jurassic. The most prospective areas are located NE of Poznań–Kalisz line and SW of Poznań.
EN
In the present study, the thermal history of the Late Carboniferous (Stephanian) coal-bearing sediments of the Sabero Coalfield has been reconstructed in order to elucidate coal rank. The Sabero Coalfield is located in a small intramontane coal-bearing basin along the Sabero-Gordón fault zone, one of the major E-W trending strike-slip fault systems of the southern part of the Cantabrian Zone (NW Spain). The total thickness of the Stephanian succession is in excess of 2,000 m, and is composed of siliclastic rocks and intercalated coal seams with tonsteins. Mean vitrinite reflectance values in the Stephanian rocks in the Sabero Coalfield are in the range from 0.61 to 3.14% Rr, but most values are in the range from 0.8 to 1.5% Rr (based on 84 samples). Average vitrinite reflectance gradient is high (0.73% Rr/km), which suggests high value of average paleogeothermal gradient (52°C/km). The maximum paleotemperatures calculated from vitrinite reflectance values for the Stephanian rocks range between 89°C (top of the Stephanian) and 195°C (bottom of the Stephanian). Coalification of the organic matter in the Stephanian rocks was achieved in the Early Permian, and was most likely related to several almost simultaneous related to magmatic and hydrothermal activity during high subsidence period in the pull-apart basin. The primary, burial-related maturity pattern, was probably slightly overprinted by fluid migration event, which is supposed to have occurred in Early Permian time.
EN
The burial history and thermal evolution of the western part of the Baltic region was reconstructed by means of 1-D modelling for eight boreholes penetrating the lower Paleozoic succession. The Neoproterozoic rifting presumably caused elevation of heat flow, while Cambrian to Mid Ordovician post-rift thermal sag of the Baltica passive margin led to systematic decrease of heat flow with time. Development of the Late Ordovician to Silurian flexural foredeep of the Caledonide collision zone was associated with intensive subsidence, a high rate of sediment deposition and rapid burial of the Upper Cambrian and/or Tremadocian, Upper Ordovician and lower Silurian source rocks, presumably sufficient for the early stage of oil generation. After post-Caledonian Early Devonian uplift, the western Baltic region was subject to Early Devonian to early Carboniferous subsidence and deposition, leading to further burial of the source rocks. Together with elevated heat flow, characteristic of the Variscan broad foreland, this caused further source rocks maturation and hydrocarbon generation. Late- to post-Variscan uplift and erosion (late Carboniferous to late Permian) resulted in complete removal of the Middle Devonian to lower Carboniferous strata and development of the major regional unconformity. During late Permian to Cretaceous time the western part of the Baltic region constituted an eastern flank of the Polish Trough, with the main phases of subsidence and burial during late Permian-Early Triassic time, related to rifting in the Polish Trough, and during Late Cretaceous time, related to the compressional regime. Maturity profiles in boreholes from the vicinity of the studied boreholes indicate the presence of a late Mesozoic (Late Cretaceous?) positive thermal event, causing further maturation of the source rock.
EN
Maturity modelling of the Upper Carboniferous sediments has been performed in order to explain the coalification history. Assuming 2000 m eroded overburden of the post-Stephanian sandstones paleoheat flow was 51 mW/m2 in the latest Carboniferous time. The major coalification processes were likely occurred in the latest Carboniferous, and later a Mesozoic overprinting likely due to fluid migration was not significant for the organic matter maturity.
PL
Dotychczasowe oceny czasu powstania okruszcowania łupku miedzionośnego prezentowane w literaturze datują ten proces w szerokim przedziale stratygraficznym. Badania paleomagnetyczne hematytu, datowania illitu czy badania izotopowe thucholitu i ołowiu umiejscawiały mineralizację miedziową w przedziale od późnego permu-wczesnego triasu aż po kredę. W celu uściślenia wieku mineralizacji kruszcowej w powiązaniu z wynikami badań materiału organicznego, wykonano modelowania numeryczne ewolucji dojrzałości materii organicznej. W modelowaniach tych wykorzystano zjawisko nieodwracalności zmian termicznych materii organicznej. Modelowania numeryczne BasinMod wykazały, że materia organiczna łupku miedzionośnego uzyskała dojrzałość termiczną w przedziale niskotemperaturowych przemian termogenicznych "okna ropnego" (0,5-1,3% Rr, tj. w zakresie temperatur 90-170 stopni Celsjusza) w triasie środkowym i górnym. Późnojurajskie i późnokredowe pogrążenie poziomu łupku miedzionośnego nie przyniosło istotnego wzrostu dojrzałości termicznej materii organicznej. Procesy cieplne, związane z dopływem płynów hydrotermalnych powodujące zmiany w strukturze materii organicznej, były również odpowiedzialne za mineralizację kruszcową łupku miedzionośnego w triasie środkowym, a szczególnie triasie górnym w południowej części monokliny przedsudeckiej.
EN
The timing of Kupferschiefer ore mineralization with respect to stratigraphy is a matter of broad debate in the literature. The paleomagnetic dating of hematite, K-Ar ages of diagenetic illite, as well as the age of thucholite and metallic lead place the ore mineralization within the time frame of Late Permian to Early Triassic untill the Cretaceous period. To resolve the controversy about timing of ore formation with respect to organic matter alteration, the maturity of organic matter was numerically modelled, based on an irreversibility of its thermal transformation. The maturity analyses using BasinMod numerical modelling indicated that the Kupferschiefer organic matter was thermally mature within the low-temperature thermogenic processes (0.5 to 1.3% Rr, i.e. 90 to 170 degrees of Celsius) in the Middle to Upper Triassic stratigraphic interval. The Late Cretaceous lowering of the Kupferschiefer strata did not cause a significant increase in the maturity of organic matter. Heat transfer, connected with inflow of hydrothermal fluids causing of changes within the organic matter, was also responsible for ore mineralization of Kupferschiefer strata in about Middle to Late Triassic in the southern part of the Fore-Sudetic Monocline.
PL
Zastosowanie modelowań numerycznych do rekonstrukcji procesów generowania węglowodorów pozwala na integrację danych geologicznych, geochemicznych i geofizycznych. Ma to na celu przede wszystkim jak najbardziej wiarygodne odtwarzanie przebiegu procesów generowania węglowodorów, aby możliwie precyzyjnie oceniać potencjał naftowy skał macierzystych danego basenu sedymentacyjnego. Modelowania te obejmują modelowanie subsydencji, pogrążania i kompakcji osadów, przepływu energii cieplnej i ewolucji termicznej oraz generowania węglowodorów. Pozwalają one obliczyć stopień i czas dojrzewania (przeobrażenia) materii organicznej, a w efekcie końcowym ilość i skład wygenerowanych węglowodorów oraz określić czas kiedy miało to miejsce.
EN
Integrated numerical modelling of petroleum generation allows to reconstruct reliable hydrocarbons generation processes. Consequently, it allows to estimate petroleum potential of source rocks in the sedimentary basins. These modelling consist of modelling of subsidence, burial and compaction of sediments, energy transport, thermal history and hydrocarbons generation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.