In this paper, a special class of generalized regular differential delay systems with constant coefficients is extensively studied. In practice, these kinds of systems can model the size of a population or the value of an investment. By considering the regular Matrix Pencil approach we finally decompose it into two subsystems, whose solutions are obtained. Moreover, since the initial function is given, the corresponding initial value problem is uniquely solvable. Finally, an illustrative application is presented using dde23 MatLab (m-) file based on the explicit Runge-Kutta method.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.