We consider two-dimensional thermoelastic composite materials in the case when the temperature is constant. Using complex potentials and applying a method of functional equations, we construct a simple algorithm to solve the corresponding boundary value problem. The stress tensor is written with the accuracy of up to the term 0 (R^2), where R = max[k,m]r[k]d[[km]^-1, r[k] is the radius of the k-th inclusion, d[km] is the distance between centers of the k-th and m-th inclusion (k is not equal to m). The effective elastic constants and the coefficient of thermal expansion are written in analytic form up to 0 (R^4).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.