Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  materiał anodowy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Przedstawiono wyniki badań nad zastosowaniem sacharozy jako dodatku do materiału LTO w celu zwiększenia jego przewodnictwa w bateriach litowo-jonowych.
EN
The results of research on the use of saccharin as a component of LTO material to increase electrical conduction in lit-ions batteries.
EN
Due to the need for comprehensive management of energy resources, the storage of energy becomes an increasingly important issue. From the analysis of the advantages and drawbacks of all methods of energy storage, reversible electrochemical cells seem to be the most effective. Among them, rechargeable lithium batteries are characterized by high energy density (Fig. 1), high voltage and good cyclic stability [7]. Thus, they have been a dominant technology of energy storage systems for over a decade. It is expected that market demand for Li-Ion cells in the coming years will grow at a rapid rate, as a result of their widespread use inter alia in portable electronic devices such as mobile phones, smartphones, tablet PCs and laptops (Fig. 2) [9]. This article presents the characteristics of lithium batteries. The most commonly used cathode material in Li-Ion battery is layered cobalt oxide (130 mAh/g). However, it is expensive and toxic material, thus manganese-based compounds (LiMnO2, LiMn2O4), polyanionic olivine structured materials (LiFePO4) and silicates Li2MSiO4 (M = Mn, Co, Fe) gain an increasing interest. Due to the presence of two lithium ions in the structure of silicates, these materials have a high theoretical capacity, reaching about 300 mAh/g (Tab. 2) [1, 7–9, 11, 12]. Commercially used anode material is graphite (372 mAh/g). Nevertheless, scientists are still looking for new anode materials with a higher gravimetric capacity. Researches are primarily focused on modifications of the graphite or the use of lithium alloys with other elements (Sn, Al, Si) (Tab. 3) [1, 9, 12, 14, 15]. In the Lithium-Ion cells only non-aqueous solutions are used in the character of electrolytes. As a best material, the inorganic electrolyte lithium salts (such as LiBr, LiAsF6, LiPF6, LiBF4, etc.) soluble in organic solvents are used [1, 2, 7, 8]. However, the study on alternative solutions (polymer electrolytes) is very important. Continuous technological progress makes the research on improving the reversible electrochemical cells necessary to fulfill the expectations of users in order to improve the quality of their lives.
PL
Ogniwa litowe zostały opracowane w latach 70. XX wieku przez Whittinghama. Wtedy jako anodę stosowano lit metaliczny. Obecnie lit zastępowany jest najczęściej przez grafit. Chociaż anody węglowe są o wiele bardziej stabilne w porównaniu z metalicznym litem, to poszukiwane są alternatywne materiały, które mogą zastąpić grafit. Wśród nich jest LTO - spinel Li4Ti5O12. Właściwości elektrochemiczne LTO mogą być zmieniane przez domieszkowanie jonami metali przejściowych takich jak: Ni3+, Co3+, Fe3+, Mn3+, V5+. Głównym celem tej pracy jest badanie wpływu obecności jonów miedzi na strukturę i właściwości modyfikowanego spinelu. Domieszkowane materiały zostały przygotowane metodą stałotlenkową. Scharakteryzowano je pod względem składu fazowego, struktury krystalicznej oraz pojemności w cyklach ładowania/rozładowania. Badania wykazały, że stosując metodę wysokotemperaturowej reakcji w fazie stałej można uzyskać zróżnicowane pod względem zawartości faz Li4-xCuxTi5O12, TiO2 oraz Li2TiO3 materiały o strukturze spinelu. Niektóre z tych materiałów wykazały stabilną pojemność, jednak znacznie odbiegającą od pojemności teoretycznej, dla początkowych cykli ładowania i rozładowania. Jednak uzyskanie materiału tego typu o zbliżonej charakterystyce, ale pod znacznie większymi obciążeniami, wymaga jednak dalszej optymalizacji.
EN
Lithium cells have been developed in the 70's of the 20th century by Whittingham. At that time, a lithium metal anode was used. Currently, the lithium is replaced by graphite. Although the carbon anodes are much more stable when compared to metallic lithium, alternative materials are searched to replace graphite. Spinel lithium titanium, Li4Ti5O12 (LTO) is among them. Electrochemical LTO can be changed by doping with transition metal ions such as Ni3+, Co3+, Fe3+, Mn3+ and V5+. The main objective of this work is to study the impact of the presence of copper ions on the structure and properties of the modified spinel. Doped materials have been prepared by the solid oxides method. The materials were characterized in terms of phase composition, crystalline structure and capacity of charge/discharge cycles. Studies have shown that, using the method of high-temperature solid-phase reactions, spinel structured materials can be obtained that are diverse in terms of the phase content of Li4-xCuxTi5O12, TiO2 and Li2TiO3. Some of these materials have shown a stable capacity, but significantly different from the theoretical values, for the initial charging and discharging cycles at a relatively low speed. However, material of this type with similar characteristics but working under higher loads requires further study.
4
Content available remote Electrochemical characterization of gelatine derived ceramics
EN
New materials obtained by pyrolysis of gelatine (G) and poly(1,2-dimethylsilazane) (PSN) (weight ratio: G/PSN 70/30) at temperatures 700 and 900 °C were characterized by SEM and Raman spectroscopy. The presence of ceramics influences on the cluster size of the materials. Electrochemical tests were performed by cyclic voltammetry and galvanostatic cyclic polarization. The capacity of G/PSN was 464 and 527 mAh/g for materials pyrolysed at 700 and 900 °C. The capacity fading was 1 % after 17th cycle for G/PSN at 900 °C. This value is higher of 185 mAh/g in comparison to capacity of gelatine pyrolysed at the same conditions.
5
Content available remote Wysokotemperaturowe ogniwa paliwowe SOFC : problemy materiałowe
PL
W pracy przeanalizowano podstawowe właściwości materiałów dla wysokotemperaturowych ogniw paliwowych SOFC z punktu widzenia ich funkcjonalnych właściwości, takich jak: stabilność chemiczna, właściwości transportowe, katalityczne i termomechaniczne w warunkach pracy ogniwa.
EN
The paper summarizes and discusses the basic properties of solid oxide fuel cell (SOFC) components (electrode materials and electrolyte) from the point of view of their essential functional parameters such as chemical stability, transport, catalytic and thermomechanical properties under operational conditions in a SOFC.
6
Content available remote Tworzywa elektrodowe w procesach elektrochemicznych
PL
Opisano zależność zużycia energii elektrycznej od tworzywa elektrodowego oraz współcześnie stosowane tworzywa anodowe i katodowe w procesach elektrochemicznych przebiegających z wydzielaniem produktów w postaci gazowej. Tworzywem powszechnie stosowanym w procesie wydzielania chloru ze stężonych wodnych roztworów chlorku sodu jest tytan pokryty tlenkową warstwą aktywną zawierającą dwutlenek rutenu, charakteryzującą się niskim nadpotencjałem wydzielania chloru. Tworzywem stosowanym w procesie wydzielania wodoru z roztworów alkalicznych jest nikiel pokryty powłoką aktywną o niskim nadpotencjale wydzielania wodoru.
EN
The dependence of electric energy consumption on the kind of electrode material as well as anode and cathode materials currently used in the electrochemical processes in which gaseous products are obtained, have been described. The electrode material commonly used for chlorine evolution from concentrated brine is titanium covered with an active oxide layer RuO2–TiO2, demonstrating low chlorine evolution overpotential. The material used for hydrogen evolution from alkaline media is nickel covered with an active layer with low hydrogen evolution overpotential.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.