Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  matematyka kombinatoryczna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In recent years, researchers have oriented their studies towards new technologies based on quantum physics that should resolve complex problems currently considered to be intractable. This new research area is called Quantum Computing. What makes Quantum Computing so attractive is the particular way with which quantum technology operates and the great potential it can offer to solve real-world problems. This work focuses on solving assignment-like combinatorial optimization problems by exploiting this novel computational approach. A case-study, denoted as the Seating Arrangement Optimization problem, is considered. It is modeled through the Quadratic Unconstrained Binary Optimization paradigm and solved through two tools made available by the D-Wave Systems company, QBSolv, and a quantum-classical hybrid system. The obtained experimental results are compared in terms of solution quality and computational efficiency
2
Content available remote Combinatorial Etude
EN
The purpose of this article is to consider a special class of combinatorial problems, the so called Prouhet-Tarry Escot problem, solution of which is realized by constructing finite sequences of ±1. For example, for fixed p∈N, is well known the existence of np∈N with the property: any set of np consecutive integers can be divided into 2 sets, with equal sums of its p[th] powers. The considered property remains valid also for sets of finite arithmetic progressions of complex numbers.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.