Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  mask material
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Masks are the primary tool used to prevent the spread of COVID-19 in the current pandemic. Tests were carried out to determine the total pressure drop through the materials from which the masks are made and the correlation of these results with the concentration of carbon dioxide in the inner space of the mask. The results showed that a parameter representing hydraulic losses of the mask material has a significant influence on the concentration of carbon dioxide in the inner space of the mask. Masks with higher hydraulic resistances accumulated a higher concentration of carbon dioxide, and generated greater fluctuations of carbon dioxide as a function of time, which may be caused by compensation of the respiratory system. For example, in a two-layer mask (mask no. 3) the hydraulic resistance values are about three times higher than in a single-layer mask (mask no. 1). The study also noticed that the inscriptions and prints placed on the masks increase the hydraulic resistance of the material from which the masks are made, which may also contribute to the accumulation of carbon dioxide in the space between the mask and the face. To reduce the accumulation of carbon dioxide within the inner space of the mask, the results of this work suggest searching for mask materials with the lowest possible hydraulic resistance.
2
EN
The main goal of the studies on epitaxial regrowth process of InP on patterned substrates is to gain knowledge about growth rates and interface quality on various areas to improve the fabrication technology for future applications. Prepared samples were measured at every step of the process by scanning electron microscope (SEM), optical microscope with dark field and phase contrast modes, atomic force microscope (AFM) and also using optical profilometer WLI (White Light Interferometer). Fabrication steps were divided into three main groups. First was the epitaxial growth of 5 µm thick InP layer. Next was patterning, which was made by applying a mask film on the epilayer. Shapes of the mesas after wet chemical etching with photoresist as a mask as well as the shapes of mesas slopes were irregular on the whole substrate area. These problems were solved by the use of silicon nitride mask. The mesas shapes and their slopes became then regular, independently of etching depth. Second fabrication step was etching of selected area. Couple of solutions were examined, but in details HCl:H3PO4 mixture in various proportions, which gave the best results in mesas shapes and orientations relative to the substrate. After that, the etching mask material was removed from the epilayer using a buffered hydrofluoric acid (BHF). The last step was epitaxial regrowth. To see how the epitaxial growth process was performed on different areas of patterned substrate it was suggested using a “sandwich”, which consisted of 50 layers of indium phosphide and indium gallium arsenide. This idea helped to understand the phenomena occurring during the epitaxial growth on that kind of substrate. The highest growth rate occurred on the top of the mesas and the lowest on their slopes. Described experiments are introduction to the studies on epitaxial growth of buried heterostructure (BH).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.