Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  marmatite
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Separating jamesonite and marmatite is difficult due to their similar response to traditional collectors. To improve the selectivity of the collector and simplify the reagent system, compound phosphate (MP) as a collector for the separation of jamesonite from marmatite was studied in this study. The flotation tests revealed that, compared with the most used butyl xanthate (BX), MP had the advantages of lower dosage and stronger selectivity under weak acid pulp. Under the optimum flotation conditions, a concentrate with the grade of 31.54% Pb, 6.93% Zn and the recovery of 89.87% Pb, 12.31% Zn could be obtained from mixed binary minerals flotation (mass ratio of 1:1). Adsorption, zeta potential, FT-IR and XPS analysis demonstrated that MP performed strong chemisorption on jamesonite surface while underwent weak physisorption on marmatite, this difference was responsible for the excellent selectivity of MP toward jamesonite flotation and weak collecting capacity to marmatite.
EN
Raman spectroscopy as a high-resolution characterization technique was used to analyze various pure metal sulfides immersed in water, namely pyrite (FeS2), chalcopyrite (CuFeS2), sphalerite (ZnS), marmatite (Zn1-XFeXS) and galena (PbS). The Raman characterization was undertaken in situ with the minerals immersed in water. Characteristic Raman spectrum that shows the vibrational modes of the atomic bonds in the mineral crystal structure is reported. This spectroscopic technique revealed that marmatite particles are composed of micro-size, perhaps nano-size, zones with different Fe and Zn content. With the intensity of the Fe-S and Zn-S Raman signals, the iron content of the zones was quantified. The copper ion up-take by marmatite particles was studied through this technique. It was found that the up-take of copper ions on the marmatite zones depended on their Fe content. Copper ion up-take occurred more preferentially on the zones of low Fe content than on those of high Fe content. The adsorption of the collector propyl xanthate on pyrite and chalcopyrite was also assessed by Raman spectroscopy. The Raman spectrum revealed that dixanthogen formed on the surface of these sulfides.
EN
In this study, the synergistic depressive effect of polyaspartic acid (PASP) and zinc sulfate (ZnSO4) in the flotation separation of chalcopyrite from Cu-activated marmatite was investigated by micro-flotation experiments and ore sample flotation tests, and the possible depressive mechanism was proposed from contact angle measurements, fourier transform infrared (FT-IR) analysis, inductively coupled plasma (ICP) measurements and X-ray photoelectron spectroscopy (XPS) analysis. Microflotation tests indicated that the mixed depressant PASP/ZnSO4 (PZ) exerted strong depressive effect on Cu-activated marmatite in the pH range of 9~12, but it had little effect on chalcopyrite flotation. The ore sample flotation experiments indicated the PZ system decreased the grade of Zn in Cu concentrate by 4.18%, and the depressant consumption was reduced by more than a half. The results from contact angle measurement demonstrated that the hydrophobicity of Cu activated-marmatite surface was higher than that of chalcopyrite surface in presence of PZ. FT-IR analysis demonstrated the more intensive chemisorption of PZ on Cu-activated marmatite surface. ICP measurements showed that PASP had an excellent complexing ability with Cu2+ and Zn2+, which not only reduced the activation of Cu species, but also generated Zn-PASP complex on marmatite surface. XPS analysis indicated a stronger interaction between PZ and Cu-activated marmatite surface, and the depressant PZ may mainly react with Cu-activated marmatite surface through the copper atoms.
EN
An organic reagent, sodium salt of N,N-dimethyldi-thiocarbamate (DMDC) was investigated as a depressant for the separation of lead activated marmatite from galena in the presence of diethyldithiocarbamate (DDTC). The flotation tests of single mineral showed that lead-activated marmatite could be depressed efficiently using DMDC as the depressant. UV–vis spectroscopy and ICP study confirmed that DMDC had a stronger capacity of complexing with lead ions or hydroxy complexes of lead. FTIR and adsorption measurement showed that the adsorption of DMDC on galena and marmatite was chemisorption. In addition, after pre-treated with DMDC, DDTC could co-adsorb on the galena surface, however, less DDTC species adsorbed on the marmatite surfaces.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.