Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  maritime risk
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Within the last thirty years, the range and complexity of methodologies proposed to assess maritime risk have increased significantly. Techniques such as expert judgement, incident analysis, geometric models, domain analysis and Bayesian Networks amongst many others have become dominant within both the literature and industry. On top of this, advances in machine learning algorithms and big data have opened opportunities for new methods which might overcome some limitations of conventional approaches. Yet, determining the suitability or validity of one technique over another is challenging as it requires a systematic multicriteria approach to compare the inputs, assumptions, methodologies and results of each method. Within this paper, such an approach is proposed and tested within an isolated waterway in order to justify the proposed advantages of a machine learning approach to maritime risk assessment and should serve as inspiration for future work.
EN
The recent rapid improvement of nautical equipment functionality allows one to better observe and predict the dangers related to seamanship. However, these new features come with added complexity, and large amounts of information can overwhelm vessel crews and fleet operation centers, and the current state-of-the-art tools cannot filter out only the most important data for a given time and location. This paper presents the concepts and the algorithms of a software suite that provides a user with problem-oriented advice about a particular risk endangering a vessel and its crew. Based on the calculated navigational dangers and their predicted development, actionable guidance is proposed in an easy-to-understand human language. The quality of good seamanship is improved by a holistic approach to vessel installation, automated fleet operation center priority queuing, and the evaluation of crew performance during simulator training and daily operations. Both the software user interface, as well as the insights provided by the algorithm, are discussed.
EN
A paradigm shift is presently underway in the shipping industry promising safer, greener and more efficient ship traffic. In this article, we will look at some of the accidents from conventional shipping and see if they could have been avoided with autonomous ship technology. A hypothesis of increased safety is often brought forward, and we know from various studies that the number of maritime accidents that involves what is called “human error” ranges from some 60‐90 percent. If we replace the human with automation, can we then reduce the number of accidents? On the other hand, is there a possibility for new types of accidents to appear? What about the accidents that are today averted by the crew? This paper will present a method to assess these different aspects of the risk scenarios in light of the specific capabilities and constraints of autonomous ships.
EN
The paper addresses selected problems of marine traffic risk modelling, in respect to collision and grounding probability modelling. Two original models are presented, and a case study regarding ships navigating in selected areas of Gulf of Finland in ice free conditions is putting forward. Probability of vessel colliding is assessed by means of Minimum Distance To Collision (MDTC) based model. The model defines in a novel way the collision zone, using mathematical ship motion model, and recognizes traffic flow as non homogeneous process, unlike other existing models. Calculations presented address waterways crossing between Helsinki and Tallinn, where dense cross traffic during certain hours is observed. Risk profile for a certain period of a day is presented. For probability of grounding a new approach is proposed, which utilizes the gravity model, where spatial interactions between objects in different locations are proportional to their respective importance divided by their distance. A ship at a seaway and navigational obstructions may be perceived as interacting objects and their repulsion may be modelled by a sort of gravity formulation.
PL
W artykule przedstawiono wybrane problemy z zakresu modelowania ryzyka w transporcie morskim, w aspekcie kolizji statków oraz wejść na mieliznę. W pracy przedstawiono dwa nowatorskie podejścia do modelowania prawdopodobieństwa wystapienia powyższych wypadków. Model do oceny prawdopodobieństwa kolizji statków definiuje w nowy sposób strefę kolizji, w oparciu o właściwości manewrowe statku oraz jego hydrodynamikę. Intensywność ruchu morskiego na analizowanym akwenie modelowana jest w oparciu o proces niestacjonarny, w przeciwieństwie do istniejących modeli. Model oceny prawdopodobieństwa wejścia na mieliznę wykorzystuje model grawitacyjny, gdzie statek i otaczające go płycizny traktowane są jako masy, wzajemnie na siebie oddziaływujące. Model określa bezpieczny obszar manewrowy dla danego statku i danego akwenu. Analiza ryzyka przeprowadzona została dla dwóch wybranych akwenów w Zatoce Fińskiej. Jako konsekwencje wypadku przyjęto model kosztów, konstruowany w oparciu o dane statystyczne z międzynarodowego fundusz IOPCF, który pokrywa koszty w związku z rozlewem olejowym na morzu.
5
Content available A model for risk analysis of oil tankers
EN
The paper presents a model for risk analysis regarding marine traffic, with the emphasis on two types of the most common marine accidents which are: collision and grounding. The focus is on oil tankers as these pose the highest environmental risk. A case study in selected areas of Gulf of Finland in ice free conditions is presented. The model utilizes a well-founded formula for risk calculation, which combines the probability of an unwanted event with its consequences. Thus the model is regarded a block type model, consisting of blocks for the probability of collision and grounding estimation respectively as well as blocks for consequences of an accident modelling. Probability of vessbl colliding is assessed by means of a Minimum Distance To Collision (MDTC) based model. The model defines in anovel way the collision zone, using mathematical ship motion model and recognizes traffic flow as a non homogeneous process. The presented calculations address waterways crossing between Helsinki and Tallinn, where dense cross traffic during certain hours is observed. For assessment of, a grounding probability, a new approach is proposed, which utilizes a newly developed model, where spatial interactions between objects in different locations are recognized. A, ship at a seaway and navigational obstructions may be perceived as interacting objects and their repulsion may be modelled by a sort of deterministic formulation. Risk due to tankers running aground addresses an approach fairway to an oil terminal in Skoldvik, near Helsinki. [...]
PL
W artykule przedstawiono model oceny ryzyka w transporcie morskim, w aspekcie kolizji statków oraz wejść na mieliznę. W modelu przyjęto jeden typ statków, tankowce do przewozu ropy naftowej, z uwagi na fakt, iż w przypadku wystąpienia kolizji lub kontaktu z dnem statek ten może stanowić bardzo poważne zagrożenie dla środowiska. W pracy przedstawiono dwa nowatorskie podejścia do modelowania prawdopodobieństwa wystąpienia powyższych wypadków. Model do oceny prawdopodobieństwa kolizji statków definiuje w nowy sposób strefę kolizji, w oparciu o właściwości manewrowe statku oraz jego hydrodynamikę. Intensywność ruchu morskiego na analizowanym akwenie modelowana jest w oparciu o proces niestacjonarny, w przeciwieństwie do istniejących modeli. Model oceny prawdopodobieństwa wejścia na mieliznę wykorzystuje model grawitacyjny, który wyznacza bezpieczny obszar manewrowy dla danego statku i danego akwenu. W modelu tym statek i otaczające go płycizny traktowane są jako masy, wzajemnie na siebie oddziaływujące. Obydwa modele wykorzystują dane o ruchu statków zarejestrowane w systemie automatycznej identyfikacji statków (AIS). Analiza ryzyka przeprowadzona została dla dwóch wybranych akwenów w Zatoce Fińskiej. Jako konsekwencje wypadku przyjęto model kosztów, skonstruowany w oparciu o dane statystyczne z międzynarodowego funduszu IOPCF, który pokrywa koszty w związku z rozlewem olejowym na morzu.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.