Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  mapy odniesienia
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Multidimensional data visualization methods are a modern tool allowing to classify some analyzed objects. In the case of grained materials e.g. coal, many characteristics have an influence on the material quality. In case of coal, apart from most obvious features like particle size, particle density or ash contents there are many others which cause significant differences between considered types of material. The paper presents the possibility of applying visualization techniques for coal type identification and determination of significant differences between various types of coal. Author decided to apply relevance maps to achieve this purpose. Three types of coal – 31, 34.2 and 35 (according to Polish classification of coal types) were investigated, which were initially screened on sieves and then divided into density fractions. Then, each size-density fraction was chemically analyzed to obtain other characteristics. It was stated that the applied methodology allows to identify certain coal types efficiently and can be used as a qualitative criterion for grained materials. However, it was impossible to achieve such identification comparing all three types of coal together. The presented methodology is new way of analyzing data concerning Widery understood mineral processing.
PL
Surowce mineralne, które podlegają wzbogacaniu w celu ich lepszego wykorzystania mogą być (charakteryzują się) charakteryzowane wieloma wskaźnikami opisującymi ich, interesujące przeróbkarza, cechy. Podstawowymi cechami są wielkość ziaren oraz ich gęstość, które decydują o przebiegu rozdziału zbiorów ziaren (nadaw) i efektach takiego rozdziału. Rozdział prowadzi się z reguły, w celu uzyskania produktów o zróżnicowanych wartościach średnich wybranej cechy, która zwykle charakteryzowana jest zawartością określonego składnika surowca wyznaczoną na drodze analiz chemicznych. Takie podejście do surowca mineralnego prowadzi do potraktowania go jako wielowymiarowego wektora X = [X1,..., Xn]. Zasadniczym problemem jest także wybór jednostki populacji generalnej (ziarno, jednostka objętości lub masy), co może decydować o kierunkach charakteryzowania wielowymiarowych powiązań cech wektora X. Takimi kierunkami charakteryzowania mogą być: – wielowymiarowe rozkłady wektora losowego X wraz ze wszystkimi konsekwencjami metody (Lyman, 1993; Niedoba, 2009; 2011; Olejnik et al., 2010; Niedoba i Surowiak, 2012); – wielowymiarowe równania regresji wraz z analizą macierzy współczynników korelacji liniowej oraz korelacji cząstkowej (Niedoba, 2013b); – analiza czynnikowa (Tumidajski, 1997; Tumidajski and Saramak, 2009); – metody wielowymiarowej wizualizacji danych. W artykule zastosowano nowoczesną metodę wizualizacji wielowymiarowych danych – metodę tzw. map odniesienia (z ang. relevance maps). Aby zastosować ww. metodę przeprowadzono doświadczenia na trzech typach węgla, pobranych z trzech kopalni węgla kamiennego, zlokalizowanych w Górnośląskim Okręgu Przemysłowym. Były to węgle typu 31, 34.2 i 35, według polskiej klasyfikacji węgli. Każdą z pobranych prób poddano rozdziałowi na klasy ziarnowe a następnie każdą z klas ziarnowych rozdzielono na frakcje densymetryczne za pomocą rozdziału w roztworze chlorku cynku. Tak otrzymane klaso-frakcje przebadano chemiczne ze względu na wybrane parametry jakościowe węgla. Były to takie cechy jak: ciepło spalania, zawartość popiołu, zawartość siarki, zawartość substancji lotnych oraz miąższość materiału. Otrzymano w ten sposób zestaw siedmiu danych dla każdej klasy ziarnowej i każdego typu węgla. Stanowił on swoisty siedmiowymiarowy zbiór, który postanowiono zobrazować za pomocą techniki wizualizacji bazującej na tzw. mapach odniesienia. W metodzie map odniesienia na płaszczyźnie służącej do wizualizacji danych zostają rozmieszczone specjalne punkty zwane punktami odniesienia, reprezentujące poszczególne cechy. Do każdej cechy (współrzędnej) zostaje przyporządkowany punkt odniesienia reprezentujący tą cechę. Czyli przy danych 7-wymiarowych umieszczamy na płaszczyźnie 7 takich punktów odniesienia reprezentujących poszczególne współrzędne. Rozkład punktów reprezentujących przedstawiane wielowymiarowe dane odzwierciedla relacje pomiędzy tymi danymi a cechami. Im bardziej i-ta cecha występuje w danym obiekcie (czyli i-ta współrzędna ma większą wartość), tym bliżej powinien leżeć punkt reprezentujący dany obiekt względem punktu odniesienia reprezentującego i-tą cechę (współrzędną). W ten sposób każdy punkt odniesienia reprezentujący daną cechę, dzieli płaszczyznę na obszary bardziej oraz mniej zależne od cechy nr i (mniej oraz bardziej odległe od punktu odniesienia reprezentującego i-tą cechę). Dokładny opis algorytmu przedstawiono w podrozdziale 3 artykułu. Za pomocą omawianej metody dokonano wizualizacji danych dotyczących przedstawionych typów węgla. Uzyskane rezultaty przedstawiono na rysunkach 1-9. Widoki te pokazują sposób, w jaki 7-wymiarowe dane zostają przekształcone przy pomocy mapy odniesienia do dwóch wymiarów. Algorytm wizualizacji przy użyciu mapy odniesienia działa tak by pomimo znacznej redukcji liczby wymiarów, w jak największym stopniu odległości pomiędzy punktem reprezentującym konkretny wektor danych a punktami odniesienia zależały od współrzędnych tego wektora danych. W ten sposób na ekranie 2-wymiarowym, możemy zobaczyć istotne cechy danych 7-wymiarowych. Na rysunkach 1-4 widać, w jaki sposób wzrasta grupowanie punktów reprezentujących trzy różne klasy węgla (31, 34.2 oraz 35) wraz ze wzrostem parametru ITER. Widać, że punkty będące obrazami danych reprezentujących te same klasy węgla zaczynają zajmować osobne podobszary oraz zaczynają się grupować. Jednak w niektórych częściach przestrzeni obrazy punktów reprezentujących różne klasy węgla zachodzą na siebie. Przez to nie możemy na podstawie tych rysunków stwierdzić, że analizowane dane pozwalają na prawidłową klasyfikację typów węgla. W celu uzyskania bardziej czytelnych wyników postanowiono przedstawić przy pomocy mapy odniesienia, te same dane w nieco inny sposób. Postanowiono przeanalizować dane reprezentujące różne typy węgla parami. Rysunek 5 przedstawia widok uzyskany dla danych reprezentujących typy węgla 34.2 oraz 35. Widać na nim czytelnie, że obrazy punktów reprezentujących próbki węgla typu 34.2 gromadzą się w skupiskach, które łatwo można odseparować od skupisk obrazów punktów reprezentujących próbki węgla 35. Podobne obserwacje dokonano na podstawie rysunków 6 i 7, gdzie przedstawiono parami, odpowiednio, węgle typu 31 i 34.2 oraz 31 i 35. Przeprowadzona wizualizacja wielowymiarowa przy użyciu map odniesienia pozwala więc stwierdzić, że informacje zawarte w analizowanych siedmiowymiarowych danych są wystarczające do prawidłowej klasyfikacji typów węgla 31, 34.2 oraz 35.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.