Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  mapa potencjału produktywności
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Określenie optymalnego rozmieszczenia odwiertów eksploatacyjnych na złożu węglowodorów jest kluczowe dla jego efektywnej eksploatacji. Tak sformułowane zagadnienie stanowi złożony problem optymalizacyjny, którego rozwiązanie w postaci lokalizacji odwiertów zależy między innymi od sposobu zdefiniowania funkcji celu. W literaturze najczęściej występują dwie postacie funkcji celu: zysk bieżący netto (NPV) oraz sumaryczne wydobycie ropy naftowej. Rzadziej spotykana jest funkcja celu bazująca na równomierności sczerpania złoża. Artykuł jest poświęcony próbie zastosowania funkcji celu opartej na czasie wydobycia ropy ze stałą wydajnością (tzw. plateau). Optymalizację prowadzono dla sumarycznego wydobycia ropy oraz zysku bieżącego netto w czasie trwania fazy plateau. W tym celu zbudowano hybrydowy algorytm optymalizacyjny bazujący na optymalizacji rojem cząstek. Zastosowanie algorytmu hybrydowego łączącego trzy mechanizmy wynikało z jednej strony z konieczności poprawienia skuteczności podstawowej metody optymalizacyjnej, z drugiej zaś miało na celu ograniczenie tzw. przedwczesnej zbieżności. Cele te zostały zrealizowane poprzez wykorzystanie mapy potencjału produktywności oraz wprowadzenie mechanizmu mutacji. Optymalizację prowadzono dla dwóch różnych sposobów sterowania odwiertami: sterowania grupowego ze stałą wydajnością oraz sterowania indywidualnego. Zbudowany algorytm potwierdził efektywność, uzyskując wzrost wartości funkcji celu w stosunku do wartości pierwotnej od 40% do 300%. We wszystkich analizowanych przypadkach algorytm rozmieścił odwierty produkcyjne poprawnie, co do zasady. Odwierty zostały rozmieszczone w strefie ropnej w bezpiecznej odległości zarówno od kontaktu woda–ropa, jak i ropa–gaz, przy czym stwierdzono pewne różnice w zależności od przyjętej funkcji celu. Przeprowadzone symulacje potwierdziły możliwość zastosowania czasu trwania plateau jako funkcji celu dla optymalizacji położenia odwiertów produkcyjnych.
EN
Determining the optimal placement of production wells in a hydrocarbon reservoir is crucial for the effective exploitation. The problem formulated in this way is a complex optimization problem, the solution of which in the form of the location of the wells depends, inter alia, on the method of defining the objective function. Two forms of the objective function are most often found in the literature. These are the net pay value (NPV) and total oil production. The objective function based on the uniformity of the reservoir depletion is less common. The article is devoted to an attempt to apply the objective function based on the duration of oil production with a constant production rate (the so-called production plateau). The optimization was carried out for the total oil production and for the net pay value for the plateau period. The need to use a hybrid algorithm combining three mechanisms resulted, on the one hand, from the need to improve the effectiveness of the basic optimization method, and on the other hand, to reduce the so-called “premature convergence”. For this purpose, a hybrid optimization algorithm based on particle swarm optimization was built. These goals were achieved through the use of a productivity potential map and a mutation mechanism. Optimization was carried out for two different well control methods: group control with constant production rate and individual well control. The developed algorithm confirmed the effectiveness, obtaining an increase in the value of the objective function in relation to the original value from 40% to 300%. As a rule, the algorithm placed the production wells correctly in all analyzed cases. The well were located in the oil zone at a safe distance from both water-oil and oil-gas contacts, with some differences depending on the target function adopted. The simulations carried out confirmed the possibility of using the plateau duration as a function of the objective for optimizing the location of production wells.
PL
Jednym z podstawowych elementów planu zagospodarowania złoża węglowodorów jest określenie liczby i położenia odwiertów eksploatacyjnych (produkcyjnych i zatłaczających). Należy jednak zauważyć, że zdecydowana większość prac poświęcona temu zagadnieniu opisuje proces optymalizacji położenia, a nie liczby odwiertów, przyjmując, że jest ona zadana arbitralnie. Wynika to z faktu, że znane i stosowane metody optymalizacyjne operują na stałej liczbie parametrów optymalizacyjnych, w związku z czym liczba odwiertów wydobywczych nie może zmieniać się w trakcie procesu optymalizacji. W artykule przedstawiono modyfikację podstawowej metody optymalizacyjnej uwzględniającą zmianę liczby odwiertów w czasie optymalizacji, przy czym optymalizacja położenia i liczby odwiertów przebiega równocześnie. Podstawową metodą optymalizacyjną w skonstruowanym algorytmie jest optymalizacja rojem cząstek (ang. PSO) – jedna z najbardziej efektywnych metod optymalizacji bezgradientowej, należąca do grupy metod stochastycznych. Została ona zmodyfikowana dla potrzeb przyjętego problemu optymalizacyjnego poprzez zmianę postaci funkcji celu oraz wprowadzenie zmiennej progowej, co pozwoliło na operowanie zmienną liczbą odwiertów. W celu poprawienia zbieżności algorytm uzupełniono o mechanizm mutacji oparty na mapie potencjału produktywności. Testy zbieżności metody przeprowadzone na przykładzie złoża testowego PUNQ-S3 wskazały na zadowalającą efektywność zaproponowanego rozwiązania. Algorytm potrzebował 150 iteracji i 750 wywołań funkcji celu, aby 2,5-krotnie zwiększyć początkową wartość NPV przy równoczesnej 3,5-krotnej redukcji liczby odwiertów produkcyjnych. Z kolei zastosowanie algorytmu do optymalizacji liczby i rozmieszczenia odwiertów zatłaczających przy zadanej liczbie konfiguracji odwiertów wydobywczych pozwoliło na zwiększenie zysku netto o 1/3 przy ponad 2-krotnej redukcji liczby odwiertów
EN
One of the basic elements of the hydrocarbon reservoir development plan is to determine the number and location of production and injection wells. However, it should be noted that most of the research works dedicated to this issue describe the process of placement optimization but not the number of exploitation wells assuming that it was an arbitrary set. This is partly due to the fact that known and used optimization methods operate on a fixed number of optimization parameters, therefore the number of production wells can not change during the optimization process. The paper presents modification of the basic optimization method taking into account the change in the number of wells during optimization. The optimization of the placement and number of wells run simultaneously. The basic optimization method in the constructed algorithm is particle swarm optimization (PSO) – one of the most effective methods of non-gradient optimization, belonging to the group of stochastic methods. It was modified for the needs of the adopted optimization problem by changing the form of the objective function and introducing the threshold variable which allowed to change the number of wells. In order to improve the convergence, the algorithm is supported by a mutation mechanism based on the productivity potential map. The convergence tests carried out based on the example of the PUNQ-S3 benchmark field showed the satisfactory effectiveness of the proposed solution. The algorithm took 150 iterations and 750 objective function calls to increase the starting NPV value by 2.5 times while reducing the number of production wells by 3.5 times. On the other hand, the use of the algorithm to optimize the number and placement of injection wells for a given number of production wells configuration allowed to increase the NPV value profit by 1/3 with a reduction of more than 2 times in the number of wells.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.