Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  mantle reflectors
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Palaeoproterozoic collision of Archaean Fennoscandia, Volgo-Uralia and Sarmatia, viewed as a large composite of terranes, each with an independent history during Archaean and Early Proterozoic time, formed the East European Craton. This paper summarizes the results of deep seismic sounding investigations of the lithospheric structure of the southwestern part of the East European Craton. On the basis of the modern EUROBRIDGE’94–97, POLONAISE’97 and CELEBRATION 2000 projects, as well as of data from the Coast Profile and from reinterpreted profiles VIII and XXIV, the main tectonic units of Fennoscandia and Sarmatia are characterized. The crustal thickness in the whole area investigated is relatively uniform, being between 40 and 50 km (maximum about 55 km). For Fennoscandia, the crystalline crust of the craton can be generally divided into three parts, while in Sarmatia the transition between the middle and lower crust is smooth. For both areas, relatively high P-wave velocities ( 7.0 km/s) were observed in the lower crust. Relatively high seismic velocities of the sub-Moho mantle (~8.2–8.3 km/s) were observed along most of the profiles. The uppermost mantle reflectors often occur ca. 10 to 15 km below the Moho. Finally, we show the variability in physical properties for the major geological domains of Fennoscandia and Sarmatia, which were crossed by the network of our profiles.
EN
This paper presents the results of seismic investigations on the structure of the lithosphere in the area of the Trans-European Suture Zone (TESZ) in Poland that is located between the southwestern margin of the East European Craton (EEC) to the north-east, the West and Central European Palaeozoic Platform (PP) to the south-west and the Carpathians to the south. Based on results of the modern POLONAISE’97 and CELEBRATION 2000 projects, as well as older profiles, models are presented for the configuration and extent of different crustal types. In the investigated area, the EEC has a relatively uniform crustal thickness of 40 to 50 km with its three-layered crystalline crust displaying P-wave velocities of 6.1–6.4, 6.5–6.8 and 6.9–7.2 km/s in the upper, middle and lower parts, respectively. The Variscan consolidated crust is covered by 1–2 km thick sediments and consists of two layers with velocities of 5.6–6.3 and 6.5–6.65 km/s. In the Carpathians, sediments reaching to depths of some 20 km and are characterized by velocities of <5.6–5.8 km/s, whilst the underlying two-layered crystalline crust displays velocities of 6.0–6.2 and 6.5–6.9 km/s. The crust of the TESZ can be divided into the Małopolska, Kuiavia and Pomerania blocks that are overlain by up to 9–12 km thick sediments having velocities <5.4 km/s. In the area of the TESZ, the upper part of the consolidated crust has to depths of 15–20 kmrelatively low velocities of <6.0 km/s and is commonly regarded as consisting of deformed and slightlymetamorphosed Early Palaeozoic sedimentary and volcanic series. In this area the middle and lower crust are characterized by velocities in the range of 6.3–6.6 km/s and 6.8–7.2 km/s, respectively, that are comparable to the EEC. Based on the dense network of seismic profiles the map of the depth toMoho is given for the area of Poland. Uppermost mantle reflectors occur about 10 to 15 km below the Moho whereas the deepest reflectors are recorded at depths of 90 km. Future investigations ought to aim at an integrated geological-geophysical program, including deep near-verical reflection-seismic profiling and ultimately the drilling of deep calibration boreholes.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.