Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  maize silage
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study analysed the effects of microwave radiation and sodium hydroxide on the destruction of lignocellulosic plant biomass (maize silage) and determined the susceptibility of a pre-treated substrate on anaerobic decomposition in the methane fermentation process. The effects of microwave heating-based disintegration were compared to conventional heating. The highest effectiveness of biogas production was obtained during the fermentation of a substrate conditioned using microwave radiation with the addition of NaOH in an amount of 0.2 g/gd.m., and the obtained result was 11.3% higher than a sample heated conventionally and was 29.4% higher than a sample subjected to no chemical treatment.
PL
Celem opisanych badań była analiza oddziaływania promieniowania mikrofalowego oraz wodorotlenku sodu na destrukcję lignocelulozowej biomasy roślinnej (kiszonka kukurydzy) oraz określenie podatności wstępnie przygotowanego substratu na beztlenowy rozkład w procesie fermentacji metanowej. W toku prac porównano efekty dezintegracji w oparciu o ogrzewanie mikrofalowe z wynikami uzyskanymi podczas ogrzewania konwencjonalnego. Najwyższą efektywność produkcji biogazu uzyskano podczas fermentacji substratu kondycjonowanego przy pomocy promieniowania mikrofalowego z dodatkiem NaOH w ilości 0,2 g/gs.m., otrzymany wynik był o 11,3% większy od próby ogrzewanej konwencjonalnie i o 29,4% większy od próby nie poddanej obróbce chemicznej.
PL
W pracy przedstawiono innowacyjną metodę mikrofalowego ogrzewania reaktorów beztlenowych do wytwarzania biogazu z roślin energetycznych (kiszonki kukurydzy (Zea maize), lucerny (Medicago L.), ślazowca pensylwańskiego (Sida hermaphrodita (L.) Rusby), miskanta olbrzymiego (Miscanthus x giganteus) oraz sianokiszonka). Największą wydajnością wytwarzania biogazu wynoszącą 680 dm3/kg (w odniesieniu do suchej masy organicznej osadu) charakteryzowała się kiszonka kukurydzy, natomiast najmniej biogazu (331 dm3/kg) uzyskano podczas fermentacji kiszonki lucerny. Wykazano, że promieniowanie mikrofalowe poprawiło wydajność wytwarzania metanu z kiszonki kukurydzy, sianokiszonki i kiszonki miskanta, przy czym w przypadku kiszonki kukurydzy zawartość metanu w biogazie wzrosła o 18% (wydajność procesu zwiększyła się z 361 dm3/kg do 426 dm3/kg). W eksperymentach z użyciem kiszonki lucerny i ślazowca nie zaobserwowano wpływu promieniowania mikrofalowego na zwiększenie skuteczności wytwarzania biogazu i metanu w procesie fermentacji. Jakkolwiek natura atermicznych oddziaływań mikrofal nie została jeszcze jednoznacznie wyjaśniona, to jednak przeprowadzone badania wskazują na możliwość intensyfikacji procesów biochemicznych w reaktorach beztlenowych w celu zwiększenia skuteczności wytwarzania biogazu i metanu z roślin energetycznych.
EN
The paper presents an innovative method of microwave heating applied to anaerobic reactors for the manufacture of biogas from the energy crops silages (maize (Zea maize), alfalfa (Medicago L.), sida (Sida hermaphrodita (L) Rusby), giant miscanthus (Miscanthus x giganteus) and hay silage). Maize silage was demonstrated to be the most efficient in terms of biogas production, which amounted to 680 dm3/kg (per dry mass – VSS), while the least biogas (331 dm3/kg) was obtained during the fermentation of alfalfa silage. The microwave radiation clearly improved the capacity of maize, ray silage and of giant miscanthus to produce methane. For the maize silage, the methane content in the biogas increased by 18% (process performance increased from 361 dm3/kg to 426 dm3/kg). In case of alfalfa and sida silage, no effect of microwave radiation on the increase in effectiveness of methane and biogas production by fermentation process was observed. Though the nature of athermic microwave effects has not yet been clearly explained, the research conducted implies a possibility to intensify biochemical processes in anaerobic reactors in order to improve the effectiveness of biogas and methane production from the energy crops.
PL
Rozwój zrównoważonego rynku bioenergii opiera się obecnie na uprawach energetycznych, których zwiększona produkcja konkuruje ze światowym zaopatrzeniem w żywność oraz paszę. W związku z tym jest potrzeba poszukiwania alternatywnej biomasy energetycznej z roślin nie przeznaczonych do spożycia. Alternatywę stanowi biomasa mikroglonów, która może być produkowana niezależnie od wykorzystania gruntów rolnych. Mając to na uwadze, przeprowadzono badania laboratoryjne (w reaktorach mezofilowych pracujących w systemie ciągłym) nad określeniem potencjału biomasy mikroglonów, jako surowca do współfermentacji metanowej z kiszonką z kukurydzy (Zea mays), w celu zwiększenia wydajności wytwarzania biogazu i metanu. Na podstawie uzyskanych wyników badań wykazano, że dodatek biomasy mikroglonów do kiszonki kukurydzy poprawił wartość stosunku C/N, w porównaniu do pojedynczych substratów fermentacyjnych. Największą ilość metanu (3045 cm3/d) oraz największą wydajność wytwarzania biogazu (628 cm3/g – w odniesieniu do suchej masy organicznej) uzyskano wówczas, gdy biomasa mikroglonów stanowiła 40% mieszaniny poddanej fermentacji, a stosunek C/N wynosił 17,53.
EN
Development of a sustainable bioenergy market is based these days on energy crops, increased production of which competes with global food and feed supply. Consequently, there is a need to identify an alternative energy biomass of non-food plant species. The microalgae biomass offers such an alternative as it may be produced independently of farm land use. Therefore, laboratory studies (continuous reactors, mesophilic conditions) were carried out to investigate the potential of microalgae biomass as a feedstock for methane codigestion with the energy crop Zea mays silage, with the aim to enhance biogas/methane yield. The results showed that mixing of the maize silage with microalgae biomass improved the C/N ratio when compared to the individual fermentation substrates. The highest methane and biogas production (3 045 cm3/d and 628 cm3/g per dry mass, respectively) were achieved when microalgae biomass constituted 40% of the feedstock and the C/N ratio was 17.53.
EN
The paper presents the results of field tests whose aim was to assess the effect of mineral (nitrogen) fertilization on the chemical composition of green fodder and milk production. The purpose of verification of the adopted assumptions was to determine the chemical composition of green fodder, the content of green fodder fraction, nutrient value of green fodder, green and dry matter of maize, the cost of maize silage production and milk production volume. Mineral fertilization has been shown to have a very large influence on the yield of the silage material. Fodder derived from maize fertilized is characterized by a higher concentration of total protein and starch in comparison to non-fertilized plants. In addition, fertilized maize plants are characterized by a higher energy and protein value in feeding cattle in relation to non-fertilized plants. From one ha of nitrogen fertilized maize cultivation it can be produced 5 309 kg of milk more than from non-fertilized cultivation.
PL
W pracy przedstawiono wyniki badań polowych, których celem była ocena wpływu nawożenia mineralnego na skład chemiczny zielonki i produkcję mleka. Celem weryfikacji przyjętych założeń określono skład chemiczny zielonki, zawartość frakcji włókna zielonki, wartość pokarmową zielonki, plon zielonej i suchej masy kukurydzy, koszt produkcji kiszonki z kukurydzy oraz wielkość produkcji mleka. Wykazano, że nawożenie mineralne ma bardzo duży wpływ na wielkość plonu materiału kiszonkarskiego. Zielonka pochodząca z kukurydzy nawożonej charakteryzuje się większą koncentracją białka ogólnego i skrobi w porównaniu do roślin nienawożonych. Ponadto rośliny nawożone kukurydzy charakteryzują się wyższą wartością energetyczną i białkową w żywieniu bydła, w stosunku do roślin nienawożonych. Z 1 ha uprawy kukurydzy nawożonej azotem można wyprodukować o 5 309 kg mleka więcej niż z nienawożonej.
EN
The paper presents the issue of the influence of the conditions of maize silage storage on its energy value in the process of methane fermentation. For this purpose, the biogas and methane efficiencies of silage stored under anaerobic and aerobic conditions have been compared. On the basis of executed studies, it has been stated that the process of silage storage and its protection against the contact with air (oxygen) has a very large impact on its quality as a substrate for biogas plants. The silage stored in an oxygen atmosphere produced approx. 80 m3·Mg-1 of biogas less compared with silage stored under anaerobic conditions, and converting to an organic dry matter, its energy value expressed in produced methane decreases by approx. 70 m3·Mg-1.
PL
W pracy przedstawiono problem wpływu warunków przechowywania kiszonki z kukurydzy na jej wartość energetyczną w procesie fermentacji metanowej. W tym celu porównano wydajności biogazową i metanową kiszonki przechowywanej w warunkach beztlenowych oraz składowanej przy dostępie powietrza (w warunkach tlenowych). W wyniku realizacji badań stwierdzono, że sposób składowania kiszonki i jej ochrona przed kontaktem z powietrzem (tlenem) ma bardzo duży wpływ na jej jakość jako substratu do biogazowni. Kiszonka składowana w atmosferze tlenowej wyprodukowała bowiem ok. 80 m3·Mg-1 biogazu mniej w porównaniu do kiszonki składowanej beztlenowo, a w przeliczeniu na organiczną suchą masę jej wartość energetyczna wyrażona w produkowanym metanie spadła o ok. 70 m3·Mg-1.
PL
Celem badań było określenie efektywności produkcji biogazu z dwóch rodzajów kiszonek: kiszonki kukurydzy i kiszonki słomy kukurydzianej. Eksperyment podzielony był na dwa warianty, w którym kryterium podziału był rodzaj substratu. Wariant 1 zakładał fermentację kiszonki słomy kukurydzianej, natomiast wariant 2 przetworzenie kiszonki kukurydzy. Równolegle przeprowadzono próbę kontrolną, w której wykorzystano sam osad beztlenowy bez dodatku substratu. Obciążenie osadu ładunkiem związków organicznych ustalono na 5 g/dm3. W celu przeprowadzenia procesu fermentacji metanowej na skalę laboratoryjną wykorzystano zestawy respirometryczne Oxi-Top Control firmy WTW. Pozwoliły one na przeprowadzenie pomiarów ilościowych produktów metabolizmu mikroorganizmów. Komory reakcyjne zaszczepione były wpracowanym osadem beztlenowym. Po zakończeniu pomiarów respirometrycznych uzyskany biogaz poddany był analizie składu jakościowego na chromatografie GC Agilent 7890A. Przeprowadzone doświadczenie pozwoliło zaobserwować wyższą efektywność uzysku biogazu z kisznki kukurydzy. Współczynnik produkcji biogazu dla kiszonki kukurydzy wynosił 541,6 dm3/kgs.m.o., natomiast dla kiszonki słomy kukurydzianej 363,5 dm3/kgs.m.o.. Analiza składu jakościowego uzyskanego biogazu wykazała większą produkcję metanu w przypadku wariantu zasilanego kiszonką kukurydzy. Udział procentowy metanu dla wariantu 2 wynosił 53,1%, natomiast dla wariantu 1 52,2%.
EN
The aim of the study was to determine the efficiency of biogas production from two types of silage: maize silage and silage maize straw. The experiment was divided into two variants, in which the criterion of division was kind of substrate. Option 1 assumed the fermentation of silage maize straw, while option 2 processing the corn silage. In parallel, a control test was taken in which the same solid anaerobic without the addition of substrate was used. The load sludge-laden organic compounds was adjusted to 5 g/dm3. In order to carry out the methane fermentation process on a laboratory scale there were used sets of respiration Oxi-Top Control by WTW. They permitted to carry out quantitative measurements of metabolic products of microorganisms. Reaction chambers were inoculated with anaerobic sludge. After finishing the respirometric measurement the produced biogas was analyzed in qualitative composition with the use of the gas chromatograph Agilent 7890 GC. The experiment allowed to observe a higher yield efficiency of biogas from corn silage. Factor production of biogas from maize silage was 541,6 dm3/kg, and for silage corn stover 363,5 dm3/kg. analysis of the qualitative composition of the biogas obtained showed higher production of methane in the case of variant powered by corn silage. The percentage of methane for Option 2 was 53,1%, whereas for Option 1 52,2%.
PL
Doświadczenie przeprowadzone w warunkach statycznych wykazało, że zastosowanie ścieków pochodzących z płynnych stacji unieszkodliwiania toaletach chemicznych w procesie hydratacji kiszonki kukurydzy miało pośredni wpływ na znaczne zmniejszenie efektywności procesu fermentacji metanowej. W procesie hydratacji substratu organicznego, stosowanie 20% ścieków w całkowitej objętości cieczy niezbędnej do osiągnięcia pożądanego poziomu wilgotności nie wpływało istotnie na natężenie produkcji biogazu i zawartości metanu w biogazie. Zwiększenie dawki ścieków w procesie uwodnienia do 35%, 50%, 60%, 80% i 100% miało bezpośredni wpływ na redukcję efektów końcowych procesu. W przypadku wykorzystania ścieków pochodzących z toalet chemicznych jako składnika stosowanego w procesie hydratacji proces fermentacji kiszonki kukurydzy hamowany. Wyniki uzyskane w badaniu wskazują na możliwości stosowania ścieków z toalet chemicznych jako ko-substratu jednak w niewielkich ilościach.
EN
Experiments conducted under static conditions proved that the use of sewage originating from the liquid wastes disposal stations for chemical toilets in the process of maize silage hydration had an intermediate effect on a significant reduction of the effectiveness of methane fermentation process. In the process of hydration of an organic substrate, the use of 20% waste to the total volume of liquid needed to achieve the desired moisture level did not significantly affect the production rate of biogas and methane content of the biogas. Increasing the dose of waste water in the hydration to 35%, 50%, 60%, 80% and 100% had a direct impact on reducing the effects of the final effects of the process. In the case of applying sewages originating from chemical toilets as a component of the liquid used in the hydration process, analyses confirmed the inhibited effectiveness of maize silage fermentation. The highest quantity and the best qualitative composition of biogas produced was noted in the variants where the loading of anaerobic reactors with a feedstock of organic compounds reached 1.0 kg o.d.m./m3 · d. By contrast, the poorest final effects were achieved in the variant where the value of this technological parameter was at a level of 3.0 kg o.d.m /m3·d.
EN
Kiszonka z kukurydzy jest podstawowym surowcem wykorzystywanym w polskich biogazowniach. Jednak ze względu na coraz wyższe ceny tego substratu oraz wahania cen zielonych certyfikatów, koniecznym staje się poszukiwanie różnych substratów do produkcji biogazu. Z drugiej strony, duża ilość osadu wyprodukowanego w oczyszczalniach ścieków, tworzy poważny problem dla środowiska w Polsce. Stosowanie osadów ściekowych jako źródła energii odnawialnej może zmniejszyć ilość składowanych osadów i poprawić bezpieczeństwo środowiska. Problemem podczas beztlenowej fermentacji osadu ściekowego jest konieczność wystąpienia odpowiedniego stosunku C:N na poziomie 20-30. Dlatego ważne jest aby dodać do osadów innych, bogatych w węgiel materiałów. Przemawia również za tym fakt iż sam osad nie jest wydajnym substratem do produkcji biogazu. Zastosowanie ko-substratów pomoże maksymalnie wykorzystać potencjał fermentacyjny, reguluje kinetykę fermentacji metanowej poprzez poprawę stosunku C:N, zwiększa wydajność i opłacalność ekonomiczną procesu. Celem pracy było znalezienie synergii pomiędzy osadami ściekowymi oraz kiszonką z kukurydzy w dwóch różnych temperaturach: 39ºC (zakres mezofilowy) i 55ºC (zakres termofilowy).
PL
Maize silage is the primary feedstock utilized in biogas plants in Poland. However, due to the increasingly high price of that substrate and the volatile prices of green certificates, it is necessary to search for different substrates for the biogas production. On the other hand, the large amount of sewage sludge produced in wastewater treatment plants creates an important environmental problem in Poland. The use of sewage sludge as a source of renewable energy reduces the amount of stored sludge and improves environmental safety. The problem during anaerobic digestion of sewage sludge is to provide a suitable C:N ratio in the range 20-30. Therefore, it is important to add to the sludge substances rich in carbon. It is because the sludge itself is an inefficient substrate in terms of biogas production. The use of co-substrates ensures maximum use of the potential of the digester, regulates the kinetics of methane fermentation by improving the C:N ratio, increasing its efficiency and economic viability. The aim of this paper is to find synergy between sewage sludge and maize silage in two different temperatures: 39ºC (mesophilic range) and 55ºC (thermophilic range).
EN
The aim of this study was to implement ADM1xp model to simulate behavior of anaerobic co-digestion of maize silage and cattle manure. The accuracy of ADM1xp has been assessed against experimental data of anaerobic digestion, performed at OLR = 2.1 gVS dm-3·d-1 and HRT = 45d. Due to the high number of parameters in ADM1xp, it was necessary to develop a customized procedure limiting the range of parameters to be estimated. The best fitting of experimental to simulated data was obtained after verification of 9 among 105 stoichiometric and kinetic parameters. The values of objective function (Jc) ranged between 0.003 (for valerate) and 211 (for biogas production).
PL
Celem pracy było wykorzystanie modelu ADM1xp do symulacji procesu kofermentacji kiszonki kukurydzy i obornika bydlęcego. Przydatność modelu oceniano wykorzystując dane z eksperymentu w skali laboratoryjnej. Badania prowadzono przy obciążeniu komory ładunkiem organicznym OLR = 2,1 gVS dm-3·d-1 oraz hydraulicznym czasie zatrzymania wsadu w fermentorze, HRT = 45d. Z powodu dużej liczby parametrów w modelu ADM1xp, zastosowano procedurę, która umożliwia zmniejszenie liczby weryfikowanych parametrów podczas kalibracji. Najlepsze dopasowanie danych eksperymentalnych do modelowych uzyskano po weryfikacji 9 spośród 105 stechiometrycznych i kinetycznych parametrów. Wartości współczynnika dopasowania (Jc) zmieniały się w zakresie od 0,003 (kwas walerianowy) do 211 (produkcja biogazu).
EN
This paper presents the results of fractionation of particulate and soluble organic matter in a mixture of maize silage and cattle manure (49:51% volatile solids) that was used as a feedstock for anaerobic digestion. The extended Weender’s analysis was adapted to measure raw protein, raw lipids, fraction of carbohydrates (including starch, cellulose, hemicelluloses) and lignin. The content of individual fractions in composite, Xc (as kg COD kg-1 COD) was: 0.111 proteins, 0.048 lipids, 0.500 carbohydrates and 0.341 inerts. The biodegradability of Xc was 68%. Based on material balance, the carbon concentration in Xc was 0.0326 kmol C kg-1 COD, whereas nitrogen concentration 0.0018 kmol N kg-1 COD. The estimated pH of the feedstock based on acid-base equilibrium corresponded to the actual value (pH 7.14).
PL
W pracy przedstawiono wyniki stężenia substancji chemicznych rozpuszczonych i nierozpuszczonych w mieszaninie kiszonki kukurydzy zwyczajnej i obornika bydlęcego (49:51% suchej masy organicznej), który wykorzystano jako substrat do wytwarzania biogazu. Do frakcjonowania nierozpuszczalnych związków organicznych, stanowiących kompozyt (Xc), wykorzystano metodę Weender’a. Udział poszczególnych frakcji (jako ChZT) w kompozycie wyniósł: białka - 0,111, tłuszcze - 0,048, węglowodany - 0,500 oraz związki inertne - 0,341. Stężenie związków biodegradowalnych w kompozycie wyniosło 68%. Na podstawie bilansu materiałowego węgla i azotu obliczono, że stężenie węgla w kompozycie wynosi 0,0326 kmol C kg-1 ChZT, zaś azotu 0,0018 kmol N kg-1 ChZT. Odczyn (pH) wsadu surowcowego wyznaczony z równowagi kwasowo-zasadowej odpowiadał rzeczywistemu, tj. 7,14.
PL
W artykule przedstawiono wyniki badań potencjału metanogennego kiszonki kukurydzianej i gnojowicy świńskiej, wykorzystanych jako surowce w procesie fermentacji beztlenowej. Badaniom poddano 6 mieszanek, różniących się udziałem procentowym obu substratów. Zbadano wpływ składu mieszaniny reakcyjnej na kinetykę procesu, a także określono średnią dobową i sumaryczną wydajność produkcji biogazu i metanu, czas fermentacji oraz skład procentowy powstającego biogazu. Stwierdzono, że na wydajność biogazu i metanu wpływa zawartość kiszonki kukurydzianej. W badanym zakresie stężeń wydajność ta była tym większa im więcej było tego substratu w mieszance. Jednakże mniejsze obciążenia reaktora ładunkiem organicznym powodowały zwiększenie szybkości produkcji metanu – brak lub krótsze czasy inhibicji procesu.
EN
The article presents the results of methanogenic potential of maize silage and pig manure, used as raw materials in the process of anaerobic digestion. 6 blends were tested, differing in the percentage of both substrates. The influence of the composition of the reaction kinetics of the process, and the mean daily and total efficiency of biogas production and methane fermentation time and the percentage composition of the resulting biogas. It was found that the yield of biogas and methane content affects corn silage. In the tested concentrations the yield was higher, the more the substrate was in the mixture. However, a smaller load reactor organic load caused an increase in the rate of methane production - the absence or shorter inhibition process.
PL
Polska jest jednym z czołowych producentów drobiu w Europie. Roczne ilości odchodów drobiowych w skali kraju to blisko 4 mln ton. Tradycyjna gospodarka pomiotem drobiowym powoduje silną uciążliwość odorową oraz może być groźna dla środowiska z uwagi na wymywanie dużych ilości azotu, związków mineralnych i przeniesienie licznych patogenów. Dodatkowo składowane w pryzmach odchody drobiowe emitują duże ilości metanu oraz amoniaku. Fermentacja metanowa może być skuteczną technologią eliminacji wspomnianych wcześniej uciążliwości. Okazuje się jednak, że mimo rozwoju biogazowni rolniczych w Europie, nie istnieje wydajna technologia pozwalająca na fermentację pomiotu. Celem pracy było określenie możliwości fermentacji metanowej pomiotu w mieszance z najpopularniejszym wsadem do biogazowni czyli kiszonką z kukurydzy. Uzyskane wyniki dowodzą, że fermentacja pomiotu bez domieszek daje niską produkcję biogazu na poziomie 340 m3/t s.m, co jest ponad 2-krotnie mniejszym wynikiem niż wydajność kiszonki z kukurydzy. Jednak dodatek kiszonki do fermentacji pomiotu pozwala na znaczący wzrost wydajności biogazowej i zwiększenie efektywności procesu.
EN
Poland is one of the leading producers of poultry in Europe. The annual quantities of the poultry manure in the national scale are close to 4 million tons. The traditional economy of poultry manure causes strong odor nuisance and may be dangerous to the environment due to the leaching of the large amounts of nitrogen, minerals and transfer of many pathogens. Additionally, poultry manure stored in the piles emits large amounts of methane and ammonia. The methane fermentation can be an effective technology of elimination of the before mentioned nuisance. However it turns out, that despite the development of agricultural biogas plants in Europe, there is no efficient technology that enables manure fermentation. The aim of this study was to determine the possibilities of methane fermentation of the poultry manure in the mixture of the most popular input for biogas plants that is maize silage. The obtained results show that fermentation of the poultry manure without any additives gives low production of biogas at the level of 340 m3/t of dry matter, which is the result almost twice lower than the efficiency of maize silage. However, the silage addition to the poultry manure fermentation allows for a significant increase of biogas productivity and growth of the process efficiency.
EN
The aim of this study was to investigate the influence of residual glycerine (5 and 10% w/w) from the biodiesel industry, used as a co-substrate, on biogas production from maize silage. The experiments were conducted in a laboratory-scale, single-stage anaerobic digester at 39ºC and hydraulic retention time (HRT) of 60 d. Addition of 5% residual glycerine caused organic load rate (OLR) to increase to 1.82 compared with 1.31 g organic dry matter (ODM) L-1d-1 for maize silage alone. The specific biogas production rate and biogas yield were 1.34 L L-1d-1 and 0.71 L g ODM-1 respectively, i.e. 86% and 30% higher than for maize alone. Increasing the residual glycerine content to 10% increased OLR (2.01 g ODM L-1d-1), but clearly decreased the specific biogas production rate and biogas yield to 0.50 L L-1d-1 and 0.13 L g ODM-1 respectively. This suggested that 10% glycerine content inhibited methanogenic bacteria and organics conversion into biogas. As a result, there was accumulation of propionic and valeric acids throughout the experiment.
PL
W pracy badano wpływ frakcji glicerynowej w stężeniu 5 i 10% wag. na produkcję biogazu z kiszonki kukurydzy zwyczajnej. Doświadczenie prowadzono w skali laboratoryjnej, w układzie jednostopniowym. Hydrauliczny czas zatrzymania (HRT) i temperatura fermentacji wynosiły odpowiednio 60d i 39ºC. Udział frakcji glicerynowej substracie w stężeniu 5% wag. spowodował wzrost obciążenia ładunkiem organicznym (OLR) do 1,82 g s.m.o./dm3·d w porównaniu do OLR podczas fermentacji samej kiszonki (1,31 g s.m.o./dm3·d). Jednostkowa szybkość produkcji biogazu oraz współczynnik wydajności biogazu wyniosły odpowiednio 1,34 dm3/dm3·d oraz 0,71 dm3/g s.m.o. i były o 86% oraz 30% wyższe w porównaniu do wartości uzyskanych dla samej kiszonki. Gdy stężenie frakcji glicerynowej w substracie wzrosło do 10% wag. (OLR = 2,01 g s.m.o./dm3·d) jednostkowa szybkość produkcji biogazu oraz współczynnik wydajności biogazu wyraźnie zmalały do 0,50 dm3/dm3·d i 0,13 dm3/g s.m.o, co oznacza, że w stężeniu 10% wag. frakcja glicerynowa miała inhibicyjny wpływ na wzrost metanogenów i konwersję substancji organicznych do biogazu. W rezultacie następowała kumulacja kwasów propionowego i walerianowego w wodzie osadowej.
EN
The paper presents the comparison of biogas and biomethane production efficiency from maize silage (as typical biogas plant substrate) and maize straw silage in order to estimate the possibilities of maize straw application for biogas production. The experiment of biogas production was conducted in the 21-chamber biofermentor at the Institute of Agricultural Engineering. The results show that methane fermentation of typical maize silage can generate over 40% of biogas volume comparing with silage obtained from maize straw (calculated in dry matter of the substrates). However, because of the high market price of maize silage, usage of maize straw silage as a substrate for agricultural biogas plants can be more even interesting from economic point of view than typically used maize silage produced from whole maize plants.
PL
W pracy zaprezentowano wstępne wyniki badań nad efektywnością zastosowania jako substratu do biogazowni kiszonki z kukurydzy oraz kiszonki ze słomy kukurydzianej. Do badań użyto mieszanki kiszonek z gnojowicą świńską i dodatkiem zaszczepki fermentacyjnej. Badania przeprowadzono z wykorzystaniem 21-komorowego biofermentora znajdującego się w laboratorium Ekotechnologii Instytutu Inżynierii Rolniczej UP w Poznaniu. Stwierdzono, że wydajność biogazowa typowej kiszonki z kukurydzy jest o ponad 40% wyższa niż kiszonki ze słomy kukurydzianej. Biorąc jednak pod uwagę fakt, że cena rynkowa kiszonki z kukurydzy osiąga poziom 100 zł/tonę i jest ponad 2 razy większa od kosztu wyprodukowania kiszonki ze słomy kukurydzianej, zastosowanie tego drugiego materiału jako substratu do biogazowni wydaje się ekonomicznie uzasadnione.
PL
W pracy przedstawiono wyniki analiz fizykochemicznych oraz fermentacji beztlenowej trzech popularnych kiszonek rolniczych, a dokładnie kiszonki z kukurydzy, lucerny i traw. Kiszonki poddano fermentacji w formie rozdrobnionej i nierozdrobnionej. Istotne jest, ze fermentacja prowadzona była zgodnie z niemiecką normą DIN 38414-S8. W ten sposób określono potencjał biogazowy trzech wspomnianych kiszonek. Wskazano także trudności jakie mogą się pojawić przy stosowaniu jednej z kiszonek do produkcji biogazu.
EN
The study presents the results of physical and chemical analysis and anaerobic digestion of three common agricultural silages, particularly maize silage, lucerne and grass silage. The silage was subjected to fermentation in a fragmented and a non-fragmented form. It is essential that the fermentation process was carried out according to a German standard DIN 38414-S8. Biogas potential of the said silage was determined in this way. Difficulties, which may occur during the use of one of the silages for biogas production, were determined.
PL
Przedstawiono sposób formowania minisilosów z rozdrobnionej kukurydzy w warunkach laboratoryjnych z wykorzystaniem prasy o napędzie ręcznym. Kiszonkę z trzech odmian kukurydzy w tak przygotowanych silosach poddano ocenie jakościowej. Wykonano analizę podstawową składu chemicznego, oznaczono frakcje włókna oraz zawartość kwasu mlekowego, octowego i masłowego. Uzyskane wyniki badań porównano z wynikami otrzymanymi przez innych badaczy. Stwierdzono, że kiszonka sporządzona w formie minisilosów charakteryzowała się dobry-mi parametrami jakościowymi.
EN
Paper described the method of preparing mini-silos from maize plants chopped under laboratory conditions with the use of a hand driven press. Silages from three maize cultivars were evaluated in aspect of their quality. Basic chemical composition was analysed. The fibre fractions, contents of lactic, acetic and butyric acids were determined. Results of investigations were compared with the results obtained by the other scientists. It was stated that the silage prepared in mini-silos form was characterized by good qualitative parameters.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.