The overheating of the material is among major reasons for failures/damages to gas turbine blades throughout the entire process of operating aircraft turbine engines. The essential method of diagnosing condition of the blades is metallographic examination being however a destructive technique. The paper has been intended to discuss one of non-destructive testing (NDT) methods, i.e. the X-ray computed tomography (CT), and capabilities of applying it to diagnose changes in condition of gas turbine blades. ‘Tomography’ is a comprehensive term to define a set of diagnostic techniques to produce three-dimensional images that present cross-sections through detail items under scrutiny. The CT is a transmission diagnostic technique that allows layered models (images) of details to be acquired. Most commonly, it is used in research laboratories and throughout the process of the product quality inspection. The paper delivers findings of the preliminary investigation into the assessment of health/maintenance status of gas turbine blades by means of the X-ray computed tomography. The results gained have been successfully verified using the metallographic examination techniques. It has been found that the radiographic imaging method enables recognition of types, sizes, and locations of internal faults in the blades while generating three-dimensional images thereof. Presented are capabilities of the high-resolution X-ray inspection machine with computed tomography (CT), V/tome/x, furnished with a 300 kV tube, and the CT data processing capabilities of the VG Studio Max software solution, high-performance CT reconstruction included (using an optional module). At the same time work is under way with the X-ray tube for nanotomography with the 0.5 m resolution to examine, in particular, modern composite materials.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.