Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  magnetyka
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Suwalski masyw anortozytowy (SAM) występuje w podłożu krystalicznym północno-wschodniej Polski w obrębie 200-kilometrowej długości magmowego terranu mezoproterozoicznych skał facji AMCG (anortozyty–mangeryty–charnockity–granity), zwanego kompleksem mazurskim. SAM odkryto w wyniku rozpoznania wiertniczego wyraźnych ujemnych anomalii magnetycznych i grawimetrycznych. Z masywem anortozytowym są związane rozległe ujemne anomalie obu pól potencjalnych. Anomalię grawimetryczną otaczają pasma anomalii dodatnich wywołanych przez skały o podwyższonych gęstościach, takie jak: granitoidy, monzodioryty i granodioryty. Ujemną anomalię magnetyczną okalają pasma dodatnich anomalii o znacznych amplitudach, szczególnie mocno zaznaczające się od południa, zachodu i północy. Dodatnie anomalie są związane z występowaniem skał o stwierdzonej, silnej podatności magnetycznej spowodowanej zawartością ferrolitów: skał ilmenitowo-magnetytowych z towarzyszącą im mineralizacją siarczków Fe-Cu-Ni-Co. Złoża rud Fe-Ti-(V) w SAM zostały odkryte przez Państwowy Instytut Geologiczny (PIG) we wczesnych latach 60. XX w., pod miąższym nadkładem fanerozoicznych skał osadowych, w obrębie małych dodatnich anomalii magnetycznych, w rejonie Krzemianki, Udryna, ¬Jeleniewa i Jeziora Okrągłego. Złoża te udokumentowano za pomocą ok. 100 głębokich otworów wiertniczych, do głębokości 2300 m, a zasoby oszacowano w kat. C1 + C2 na ok. 1,5 mld ton rudy tytanomagnetytowej z wanadem, głównie w polu rudnym Krzemianka i Udryn. Wiek modelowy uzyskany metodą Re-Os NTIMS dla rud Fe-Ti-V i siarczków ze złóż Krzemianka i Jeziora Okrągłego wyniósł 1559 ±37 mln lat ze stosunkiem początkowym 187Os / 188Os = 1,16 ±0,06. Uznano go za wiek całego masywu suwalskiego. Pomimo wieloletnich badań, wgłębna budowa i forma masywu nie są dokładnie rozpoznane. Obecnie są wykonywane geofizyczno-geologiczne modelowania 3D danych otworowych z wykorzystaniem pakietu oprogramowania OasisMontaj (Geosoft). Model 3D jest generowany w aplikacji GeoModeller 3D (Intrepid Geophysics) w celu rozpoznania prawidłowości geologicznych oraz interpretacji anomalii magnetyczno-grawimetrycznych na całym obszarze masywu, łącznie z osłoną.
EN
Suwałki Anortosite Massif (SAM) occurs in the crystalline basement of NE Poland within 200 km of the magmatic, Mesoproterozoic AMCG (anorthosite–mangerite–charnockite–granite) rock suite terrane called the Mazury Complex. SAM was discovered as a result of the drilling research of the prominent negative magnetic and gravimetric anomalies. There is an extensive negative anomaly of both potential fields related to the anorthosite massif. Gravimetric anomaly is surrounded by the bands of positive anomalies caused by rocks with elevated densities, such as granitoids, monzondiorites and granodiorites. A negative magnetic anomaly is surrounded by the bands of positive anomalies with significant amplitudes, particularly strongly marked from the south, west and north. Positive magnetic anomalies are associated with the presence of rocks with proven strong magnetic susceptibility due to the content of ferrolites (ilmenite-magnetite rocks) with accompanying Fe-Cu-Ni-Co sulphide mineralization. Fe-Ti-(V) ore deposits in the SAM were discovered in the early 1960s, in the region of Krzemianka and Udryn, but also Jeleniewo and Jezioro Okrągłe, under a thick overburden of Phanerozoic sedimentary rocks within small positive magnetic anomalies. These deposits were documented in about 100 deep boreholes to a depth of 2300 m, and the resources in C1 + C2 category were estimated for about 1.5 billion tons of titanium-magnetite ores with vanadium, mainly in the Krzemianka and Udryn ore fields. The model age obtained by the Re-Os NTIMS method for Fe-Ti-V ores and sulphides from the Krzemianka and Jezioro Okrągłe ore deposits was 1559 ±37 Ma with an initial ratio of 187Os/188Os = 1.16 ±0.06. This age was recognized as the age of the entire Suwałki Massif. Despite many years of research, the deep structure and the form of the massif has not been fully recognized. At present, geophysical and geological 3D modelling of borehole data is carried out using the OasisMontaj (Geosoft) software package. The 3D model is generated in the GeoModeller 3D application (Intrepid Geophysics) in order to recognize the geological correctness and interpretation of magnetic-gravity anomalies of the whole massif and its cover.
PL
Wykorzystując profile przemysłowej sejsmiki refleksyjnej ulokowane w centralnej i północno-zachodniej Polsce opracowano model budowy tektonicznej podłoża przedcechsztyńskiego bruzdy śródpolskiej. Punktem odniesienia dla przeprowadzonej interpretacji danych sejsmicznych był model mezozoicznej ewolucji bruzdy, zakładający występowanie regionalnego odspojenia mechanicznego między podcechsztyńskim podłożem a mezozoiczną pokrywą osadową. W związku z tym odspojeniem tektonika nieciągła była ograniczona głównie do podłoża, zaś pokrywa osadowa charakteryzowała się brakiem regionalnych uskoków normalnych i ciągłymi gradientami zmian miąższości utworów synekstensyjnych. Jedynie lokalnie miało miejsce uskokowanie w obrębie pokrywy osadowej, często związane z rozwojem struktur solnych. Tektonika podłoża przedcechsztyńskiego bezpośrednio wpływała na tektonikę i sedymentację w obrębie mezozoicznej pokrywy osadowej jedynie w częściach bruzdy pozbawionych ewaporatów, bądź też charakteryzujących się ich niewielką miąższością (segment bałtycki i świętokrzyski). Mechaniczne odspojenie odegrało również dużą rolę w trakcie późnokredowo-paleogeńskiej inwersji bruzdy śródpolskiej. Uwzględniając lokalizację stref wysokich gradientów zmian miąższości utworów mezozoiku, lokalizację struktur solnych oraz morfologię podłoża określono położenie domniemanych stref uskokowych rozwiniętych w obrębie podłoża podcechsztyńskiego i związanych z subsydencją i inwersją bruzdy. Wyniki interpretacji danych sejsmicznych skorelowano z mapami geologicznymi oraz z przetworzonymi mapami grawimetrycznymi i magnetycznymi, uzyskując bardzo dobrą zgodność między zaproponowanym regionalnym układem tektonicznym podłoża podcechsztyńskiego a innymi danymi geologicznymi i geofizycznymi. Północno-wschodnia krawędź bruzdy śródpolskiej była związana z południowo-zachodnią krawędzią kratonu wschodnioeuropejskiego, zaś jej krawędź południowo-zachodnia — z systemem regionalnych uskoków kulisowych, powstałych najprawdopodobniej we wcześniejszych (paleozoicznych) etapach ewolucji tektonicznej tego obszaru.
EN
Using industry seismic reflection profiles located in central and northwestern Poland a new tectonic model of the sub-Zechstein basement of the Mid-Polish Trough was developed. Interpretation of seismic data was based on concept of regional mechanical decoupling between sub-Zechstein basement and Mesozoic sedimentary cover. Because of such decoupling fault tectonics was restricted mainly to the sub-Zechstein basement, and supra-salt sedimentary cover was characterized by lack of regional normal faults and rather continuous gradients of thickness changes of syn-extensional deposits. Only locally faulting within the Mesozoic cover took place, often being associated with salt tectonics. Tectonics processes within the pre-Zechstein basement directly controlled tectonics and sedimentation within the Mesozoic cover only in Baltic and Holy Cross Mts. segments of the Mid-Polish Trough, characterized by lack or small thickness of the Zechstein evaporites. Mechanical decoupling played important role also during Late Cretaceous-Palaeogene inversion of the Mid-Polish Trough. Taking into account location of high gradients of Mesozoic thickness changes, location of salt structures and morphology of top of the sub-Zechstein basement, location of inferred sub-Zechstein basement fault zones, connected to subsidence and inversion of the Mid-Polish Trough, was determined. Results of seismic data interpretation were correlated with geological maps and with processed gravity and magnetic maps, achieving very good agreement between proposed regional sub-Zechstein tectonic pattern and other geological and geophysical data. Northeastern boundary of the Mid-Polish Trough was generally controlled by the southwestern edge of the East European Craton, and its southwestern boundary could be correlated with a system of regional en-echelon fault zones, most probably formed in earlier (Palaeozoic) stages of tectonic evolution of the study area.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.