Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  magnetosphere
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
PL
SuperDARN (Super Dual Auroral Radar Network) jest światową siecią radarów koherentnego rozpraszania w paśmie wysokich częstotliwości HF (High Frequency) do badań górnych warstw atmosfery, mezosfery, jonosfery, termosfery oraz ich sprzężenia z magnetosferą i wiatrem słonecznym. Do głównych tematów badawczych SuperDARN z dziedziny fizyki atmosfery należą echa mezosferyczne, fale planetarne i związane z nimi przemieszczające się zaburzenia jonosferyczne oraz inne przejawy oddziaływania atmosfery neutralnej ze zjonizowaną. W artykule przedstawiamy perspektywy dla rozwoju badań atmosfery z użyciem radarów SuperDARN w kraju, ze szczególnym uwzględnieniem badań z dziedziny elektryczności atmosferycznej.
EN
SuperDARN (Super Dual Auroral Radar Network) is a global network of coherent scatter radars in the HF (High Frequency) band for studying the upper atmosphere, mesosphere, ionosphere, thermosphere and their coupling with the magnetosphere and solar wind. SuperDARN research topics in the field of atmospheric physics include mesospheric echoes, planetary waves and associated travelling ionospheric disturbances, and other manifestations of the interaction of neutral and ionised atmosphere. In the article we present prospects for the development of atmospheric research in Poland using SuperDARN radars, with particular emphasis on research studies in the field of atmospheric electricity.
2
Content available SuperDARN w Polsce – perspektywy
PL
SuperDARN (Super Dual Auroral Radar Network) jest światową siecią radarów do badania górnych warstw atmosfery, jonosfery i ich sprzężenia z magnetosferą i wiatrem słonecznym (Greenwald i in. 1995; Chisham i in. 2007; Lester 2008, 2013, Nishitani i in. 2019). W artykule przybliżamy szczegóły techniczne, tematy badawcze i publikacje związane z działalnością SuperDARN oraz korzyści płynące z polskiego w nim udziału, który mógłby wzmocnić badania krajowe, jak i współpracę międzynarodową oraz otworzyć nowe tematy badawcze. Zanim to będzie możliwe, należy rozwiązać kilka technicznych kwestii, których tło i perspektywy nakreślamy.
EN
SuperDARN (Super Dual Auroral Radar Network) is a global radar network for studying the upper atmosphere, ionosphere, thermosphere and mesosphere and their coupling with the magnetosphere and solar wind (Greenwald et al. 1995; Chisham et al. 2007; Lester 2008, 2013, Nishitani et al. 2019). In the article we bring closer to national readers the SuperDARN network through describing its technical details, projects and publications. In addition to strengthening present research Polish participation in SuperDARN could result in development of new topics in national research and in international cooperation. Before it is possible, several technical issues should be solved, the background and perspectives of which we outline in the article.
PL
Ogromne fluktuacje pola magnetycznego w magnetosferze ziemskiej powodują wielkie przepływy prądu elektrycznego w górnych warstwach atmosfery i indukują przepływy w sieciach infrastrukturalnych, prowadzące do katastrofalnych awarii systemów elektroenergetycznych w skali planetarnej. W latach 2012-2013 Słońce wchodzi w fazę maksimum aktywności.
EN
Enormous fluctuations of magnetic field in the Earth’s magnetosphere are causing immense electric current flows in the upper atmosphere and inducing current surges in infrastructural networks resulting in massive planetary blackouts. In the 2012-2013 period the Sun enters solar maximum.
EN
Comprehensive understanding of the dynamics of the coupled solar wind-magnetosphere-ionosphere system is of utmost interest, both from the perspective of solar system astrophysics and geophysics research and from the perspective of space applications. The physical processes involved in the dynamical evolution of this complex coupled system are pertinent not only for the Sun-Earth connection, but also for major phenomena in other astrophysical systems. Furthermore, the conditions in geospace collectively termed space weather affect the ever increasing technological assets of mankind in space and therefore need to be understood, quantified and efficiently forecasted. The present collaborative paper communicates recent advances in geospace dynamic coupling research through modeling, simulations and data analysis and discusses future directions.
EN
Over the last two decades, models of the Earth’s magnetospheric magnetic field have been continuously improved to describe more precisely the different magnetospheric current systems (magnetopause current, symmetric and partial ring currents, tail currents and field aligned currents). In this paper we compare the different Tsyganenko models and the Alexeev and Feldstein model in the context of cosmic ray physics. We compare the vertical cutoff rigidity and asymptotic direction of vertical incidence obtained with these models for the January 20, 2005, ground level enhancement and for the big magnetic storm of April 6, 2000. For the event of January 20, 2005, we study the impact of the differences in asymptotic direction obtained with the models on the radiation dose computation at aircraft altitude. For the magnetic storm of April 6, 2000, we discuss the importance of the different magnetospheric current systems in causing cutoff rigidity variations. Finally we summarise the advantages and drawbacks of the different models in the context of space weather.
EN
Data from meridional magnetometer chain of six northernmost stations of IMAGE magnetometer array are used to determine the dependence of magnetic latitudes of a subclass of magnetic impulse events (MIE) centres on season and magnetic activity. The events centres are defined, and their motion directions (east-or westward) are determined, using elements of covariance matrices of magnetic variations recorded on all magnetometers. The latitudes of centres of high-latitude, forenoon, westward moving, isolated MIEs are found to be contained in the range of latitudes of dayside area of central plasma sheet (CPS) and of boundary plasma sheet (BPS) and to decrease with increasing magnetic activity. In summer and for Kp = 0, these latitudes are the highest and their decreasing rate with increasing Kp is minimal, while in winter they are the lowest and the rate is maximal. For all seasons, this decreasing rate is less than the decreasing rate of the cusp latitude. In summer (on "summer-side" of the magnetosphere in solstices seasons), the loci of appearing MIEs are deep, well below the magnetopause layer for the activity interval 0 =< Kp =< 5. On the "winter-side" of the magnetosphere, MIEs can emerge near the magnetopause. Same relations are proposed for CPS' and BPS' dayside areas.
EN
It is known that the invariance of a physical system subject to some groups of transformation may provide important information about dynamics of the system. This report deals with one of such invariances, namely the scaling invariance and its generalization - scale-similarity, which in the last few decades appeared to be very useful in the theory of fully developed turbulence. This concept is applied to turbulence in the high latitude magnetosphere.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.