Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  magnetohydrodynamic flow
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The mathematical model of heat generation and dissipation during thermal energy transmission employing nanoparticles in a Newtonian medium is investigated. Dimensionless boundary layer equations with correlations for titanium dioxide, copper oxide, and aluminium oxide are solved by the finite element method. Parameters are varied to analyze their impact on the flow fields. Various numerical experiments are performed consecutively to explore the phenomenon of thermal performance of the combination fluid. A remarkable enhancement in thermal performance is noticed when solid structures are dispersed in the working fluid. The Biot number determines the convective nature of the boundary. When the Biot number is increased, the fluid temperature decreases significantly. Among copper oxide, aluminium oxide, and titanium oxide nanoparticles, copper oxide nanoparticles are found to be the most effective thermal enhancers.
EN
An analysis was carried out for an unsteady magnetohydrodynamic (MHD) flow of a generalized third grade fluid between two parallel plates. The fluid flow is a result of the plate oscillating, moving and pressure gradient. Three flow problems were investigated, namely: Couette, Poiseuille and Couette-Poiseuille flows and a number of nonlinear partial differential equations were obtained which were solved using the He-Laplace method. Expressions for the velocity field, temperature and concentration fields were given for each case and finally, effects of physical parameters on the fluid motion, temperature and concentration were plotted and discussed. It is found that an increase in the thermal radiation parameter increases the temperature of the fluid and hence reduces the viscosity of the fluid while the concentration of the fluid reduces as the chemical reaction parameter increases.
EN
A fluid flow and heat transfer analysis of an electrically conducting non-Newtonian power law fluid flowing over a non-linear stretching surface in the presence of a transverse magnetic field taking into consideration viscous dissipation effects is investigated. The stretching velocity, the temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The flow is induced due to an infinite elastic sheet which is stretched in its own plane. The governing equations are reduced to non-linear ordinary differential equations by means of similarity transformations. By using quasi-linearization techniques first linearize the non linear momentum equation is linearized and then the coupled ordinary differential equations are solved numerically by an implicit finite difference scheme. The numerical solution is found to be dependent on several governing parameters, including the magnetic field parameter, power-law index, Eckert number, velocity exponent parameter, temperature exponent parameter, modified Prandtl number and heat source/sink parameter. A systematic study is carried out to illustrate the effects of these parameters on the fluid velocity and the temperature distribution in the boundary layer. The results for the local skin-friction coefficient and the local Nusselt number are tabulated and discussed.
4
Content available remote Unsteady MHD Flow in a Circular Pipe of a Dusty Non-Newtonian Fluid
EN
In this paper, the unsteady magnetohydrodynamic flow of a dusty viscous incompressible electrically conducting non-Newtonian Casson fluid through a circular pipe is investigated. A constant pressure gradient in the axial direction and a uniform magnetic field directed perpendicular to the flow direction are applied. The particle-phase is assumed to behave as a viscous fluid. A numerical solution is obtained for the governing nonlinear momentum equations using finite differences. The effect of the magnetic field, the non-Newtonian fluid characteristics, and the particle-phase viscosity on the transient behavior of the velocity, volumetric flow rates, and skin friction coeffcients of both fluid and particle-phases are studied. It is found that all the flow parameters for both phases decrease as the magnetic field increases or the flow index decreases. On the other hand, increasing the particle-phase viscosity increases the skin friction of the particle phase, but decreases the other flow parameters.
5
EN
A theoretical analysis of heat transfer of steady, incompressible and electrically conducting non-Newtonian Casson fluid flow between two rotating cylinders under a radial magnetic field is studied. The problem is considered when the inner cylinder is at rest and the outer cylinder rotating with a constant velocity. In this paper, the velocity distribution, magnetic induction, the temperature distribution, stress, shear rates and rate of heat transfer are obtained analytically by using perturbation technique and shown graphically for various values of aspect ratio, Casson number, Eckert number and magnetic parameter. The critical values of Casson number have been determined.
EN
The present study is devoted to investigate the influences of hall current on unsteady free convection flow of magnetohydrodynamic non-Newtonian viscoelastic incompressible fluid with mass transfer over an infinite vertical porous plate. The system is stressed by uniform magnetic field acting in a plane, which makes an angle α with the plane transverse to the plate over an infinite vertical porous plate. The Walter's model is used to characterize the non-Newtonian fluid behavior. Similarity solution for the transformed governing equations is obtained with prescribed variable suction velocity. Numerical results for the details of the velocity, temperature and concentration profiles are shown on graphs. Excess surface temperature as well as concentration gradient at the wall have been presented for different values of the elasticity parameter n0, magnetic parameter M, Schmidt number Sc, Grashof number Gr, modified Grashof number Gc, Hall parameter m, Dufour number Df, Soret number Sr and permeability parameter k*.
EN
In this paper the steady motion of an electrically conducting, viscous and incompressible non-Newtonian fluid past a porous flat plate under a transverse magnetic filed is considered. Analytically expressions for the velocity, temperature, skin friction and magnetic induction have been obtained by using the perturbation technique. Our results are compared with the previous ordinary Newtonian fluid results. The results have been shown graphically, and the effect of different parameters on the velocity, the magnetic induction, coefficient of skin friction and temperature are discussed in these cases.
EN
A free convection flow of a second order liquid past an impulsively started vertical plate in the presence of a transverse magnetic field has been studied in this paper. The solution has been obtained by finite-difference method. The effect of the parameters m (magnetic field strength), Pr (Prandtl number), Gr (Grashof number, Gr>0, cooling of the plate by free convection, Gr<0, heating of the plate by convection currents), E (the Eckert number) and 'alpha' (the elastic parameter) on the velocity, temperature and the skin friction has been shown through several graphs and tables.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.