Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  magnetic carrier
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study demonstrated the possibility of separating fine beryl from quartz by using magnetic carrier technology with the presence of non-ionic surfactant (Sorbitan monooleate). Oleatecoated magnetite was used as a magnetic carrier for enhancing the magnetic properties of fine beryl to be separated and get rid of the most common associated gangue mineral "quartz". This study proved that the most important factors affecting this separation process is the pH, as the study showed that the efficiency of the separation process is the maximum possible when pH at the isoelectric point (IEP) of beryl. Where at IEP, beryl is ready to adsorb oleate-coated maginetite onto its surface and the presence of sorbitan monooleate helps this adsorption and strengthens. To demonstrate the separation process, physico-chemical surface characterization for beryl, quartz, magnetite and oleate-coated magnetite was studied before and after treatment with sorbitan monooleate using zeta potential measurements and Fourier Transform Infrared (FTIR). Mineralogical characterization was take place for separated minerals of beryl, quartz and magnetite using x-ray diffraction (XRD) analyses and scanning electron microscope (SEM) with energy-dispersive spectrometer (EDS) unit. The magnetic carrier separation tests were performed in this study in the case of separate minerals investigated that fine beryl (94% recovery) could be recovered under optimum test conditions of 2.5 pH, 4.29 g/L sorbitan monooleate and 1:0.5 beryl to oleate-coated magnetite ratio, while quartz under the same conditions was recovered by 9.8%. FTIR measurements for the investigated minerals before and after treatment with sorbitan monooleate confirmed that the adsorption of sorbitan monooleate on the surface of beryl far exceeds that of the surface of quartz at beryl IEP.
EN
Chromite recovery was studied using a magnetic carrier technology. Heavy media grade magnetite was used as the magnetic carrier. The effect of various reagents such as sodium oleate (NaOl) as a collector and carboxymethyl cellulose (CMC) as well as quebracho tannin as depressants on chromite removal was investigated. The effects of pH and reagent dosages were also determined. First, the zeta potential measurements were performed for different minerals in the absence and presence of NaOl, and then magnetic carrier tests were carried out under conditions based on zeta potential measurements. The magnetic carrier tests performed in the case of individual minerals (i.e. single minerals) showed that chromite (recovery of 95.1%) could be separated from serpentine (recovery of 3.2%) whereas it could not be separated from olivine. The best chromite concentrates containing 42.1% Cr2O3 were obtained with a 76% recovery from a synthetic mixtures of chromite and serpentine under optimum test conditions, that is at pH 10.5, 5.10–5 M NaOl, 20 g/Mg CMC, 0.5 g magnetite and 500 g/Mg kerosene (the feed contained 27% Cr2O3). Slime tailings of Turkish Maadin Company, Kavak Chrome Concentrating Plant in Eskisehir, which contain fine chromite, serpentine and olivine, were also investigated. It was found that chromite could not be satisfactorily recovered from the original slime sample in the presence and absence of NaOl by using the magnetic carrier technology. Additional FTIR studies performed with the investigated minerals showed that NaOl adsorption on chromite was greater than that on serpentine and magnetite minerals. It was also found that NaOl adsorption on serpentine is significantly reduced in the presence of magnetite while it increases only slightly on chromite.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.