Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 45

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  magazynowanie wodoru
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
PL
Przegląd literatury dotyczący wpływu wodoru na wyroby stalowe. Opisano proces korozji rur, podstawowe rodzaje uszkodzeń stali wywoływane przez wodór oraz główne czynniki wpływające na kruchość wodorową, takie jak m.in. mikrostruktura, właściwości mechaniczne, charakter granicy ziaren, tekstura krystalograficzna, wtrącenia i wydzielenia oraz temperatura. Mechanizmy niszczenia wodorowego przedstawiono za pomocą dwóch modeli: dekohezji wzmocnionej wodorem HEDE oraz miejscowego odkształcenia plastycznego pod wpływem wodoru HALP. Zwrócono także uwagę na warunki niezbędne do inicjacji i propagacji pęknięć HIC.
EN
A review, with 53 refs., on the fundamentals of the H₂ corrosion process, the types of steel damage caused by H₂, and the main factors affecting H₂ embrittlement, such as the material’s microstructure, mech. properties, the nature of the grain boundary, crystallographic texture, inclusions and precipitates, and temp. Two models of the H₂ destruction mechanism were presented. Attention was also paid to the conditions necessary for the initiation and propagation of H₂ -induced cracking.
PL
Wytwarzanie wodoru stanowi kluczowy obszar w dziedz inie energetyki i mobilności, dlatego istotne jest zrozumienie technologii oraz rozwijanie bardziej zrównoważonych metod produkcji tego cennego nośnika energii. W artykule skoncentrowano się na aspektach technologic znych związanych z wytwarzaniem wodoru z gazu ziemnego, wykorzystu jąc cztery metody: SMR, POX, ATR, piroliza. Przedstawiono informacje dotyczące technologii produkcji wodoru przy użyciu gazu ziemnego, szczegółowo omawiając procesy związane z każdą z metod. Zaprezentow ane zostały schematy produkcyjne dla każdej z metod, a także przeanal izowane reakcje chemiczne charakteryzujące poszczególne procesy. W celu pełniejszego zrozumienia omawianych metod, podsumowano również wady i zalety każdego z procesów.
EN
The production of hydrogen is a crucial area in the field of energy and mobility, making it essential to understand the technology and develop more sustainable methods for producing this valuable energy carri er. The article focuses on the technological aspects of hydrogen production from natural gas, utilizing four methods: SMR, POX, ATR, and pyrolysis. Information regarding the technology of hydrogen production using natural gas is presented, with a detailed discussion of the processes associated with each method. Production schematics are provided for each method, along with an analysis of the chemical reactions characterizing each process. To enhance comprehension of the discussed methods, the article also summarizes the advantages and disadvantages of each process.
PL
W celu zapewnienia efektywnego rozwoju gospodarki wodorowej w Polsce istotne będzie magazynowanie wodoru w kawernach solnych. W Gas Storage Poland sp. z o.o. zrealizowano projekt badaw czo-rozwojowy którego celem jest opracowanie i wdrożenie technologii wielkoskalowego magazynowania czystego wodoru w kawernach solnych. W ramach projektu został zbudowany specjalistyczny pojazd do prowa- dzenia badań za pomocą pomiarów geofizycznych w otworach wiert niczych ropnych, gazowych i kawernach solnych do magazynowania wodoru, gazu ziemnego i innych paliw gazowych i płynnych.
EN
n order to ensure the effective development of a hydrogen economy in Poland, it will be important to store hydrogen in salt cav erns. Gas Storage Poland sp. z o.o. has implemented a research and development project aimed at developing and implementing technology for large-scale storage of pure hydrogen in salt caverns. As part of the project, a specialized vehicle has been built to conduct surveys by means of geophysical measurements in oil and gas wells and salt caverns for the storage of hydrogen, natural gas and other gaseous and liquid fuels.
PL
Prezentowany artykuł omawia zagadnienia dotyczące technologii zaczynów cementowych proponowanych do uszczelniania kolumn rur okładzinowych w podziemnych magazynach wodoru w sczerpanych złożach węglowodorów. Do badań laboratoryjnych wytypowano dziesięć receptur zaczynów zawierających różne dodatki i domieszki (m.in. nanomateriały, tj. nano-SiO2, nano-Al2O3, lateksy, polimery wielkocząsteczkowe). Badania receptur prowadzono w temperaturze 60°C pod ciśnieniem 25 MPa, stosując w składach zaczynów domieszkę odpieniającą, upłynniającą, antyfiltracyjną oraz opóźniacz wiązania. Badania wykonywano na dwóch rodzajach cementów: portlandzkim CEM I 42,5 oraz wiertniczym klasy G. Określano parametry technologiczne świeżych i stwardniałych zaczynów cementowych, badając: gęstość, odstój wody (wolną wodę), reologię, czasy gęstnienia, a także wytrzymałość na ściskanie, porowatość oraz szczelność rdzeni cementowych względem wodoru. Płynne zaczyny cementowe posiadały prawidłowe parametry technologiczne (były dobrze przetłaczalne w warunkach HPHT, a ich gęstości wynosiły 1,80–1,91 g/cm3 ). Wytrzymałości na ściskanie stwardniałych zaczynów cementowych po okresie od 2 dni do 28 dni hydratacji, zwłaszcza w przypadku próbek z dodatkiem nanokomponentów, przyjmowały bardzo wysokie wartości (po 28 dniach przekraczając 40 MPa). Próbki kamieni cementowych posiadały bardzo niską zawartość porów kapilarnych, co ogranicza możliwość tworzenia się kanalików w płaszczu cementowym otworu wiertniczego. W większości próbek pory o najmniejszych rozmiarach (poniżej 100 nm) stanowiły zdecydowaną większość (powyżej 95–97%) ogólnej ilości porów występujących w matrycy cementowej. Najkorzystniejsze parametry technologiczne uzyskano w przypadku próbek zawierających nano-SiO2 (nanokrzemionkę), a optymalny współczynnik wodno-cementowy dla takich zaczynów kształtował się na poziomie około 0,46–0,48 – w zależności od rodzaju zastosowanego cementu. Najniższe wartości przenikalności dla wodoru zanotowano dla receptur zawierających nanokrzemionkę (nano-SiO2). Receptury o najlepszych parametrach technologicznych, zawierające nanokomponenty (po wykonaniu szczegółowych testów), będą mogły znaleźć zastosowanie podczas uszczelniania rur okładzinowych w otworach wierconych w celu magazynowania wodoru.
EN
The article presents issues related to the technology of cement slurries for sealing casing pipes in underground hydrogen storage facilities in depleted hydrocarbon reservoirs. Ten recipes of slurries containing various ingredients (including nanomaterials, i.e. nanoSiO2, nano-Al2O3, latexes, high-molecular polymers) were selected for laboratory tests. The tests were carried out at a temperature of 60°C and a pressure of 25 MPa, using defoaming, fluidizing, antifiltration admixtures and setting time retardant in the slurry compositions. The tests were carried out on two types of cement: Portland CEM I 42.5 and class G drilling cement. Technological parameters of fresh and hardened cement slurries were determined by examining the following: density, water retention (free water), rheology, thickening times as well as compressive strength, porosity and hydrogen tightness of cement cores. The liquid cement slurries had the correct technological parameters (they were well pumpable under HPHT conditions and their densities ranged from 1.80–1.91 g/cm3 ). The compressive strength of cement stones in the period from 2 days to 28 days of hydration, especially for samples with the addition of nanocomponents, was very high (after 28 days exceeding 40 MPa). The samples of cement stones had a very low content of capillary pores, which limits the possibility of forming channels in the cement sheath of the borehole. For most samples, the smallest pores (below 100 nm) accounted for the vast majority (over 95–97%) of the total number of pores in the cement matrix. The most favorable technological parameters were obtained for samples containing nano-SiO2 (nanosilica) and the optimal water-cement ratio for such slurries was around 0.46–0.48, depending on the type of cement used. The lowest hydrogen permeability values were obtained for formulations containing nanosilica (nano-SiO2). Recipes offering the best technological parameters, containing nanocomponents (after detailed tests), may be used when sealing casing pipes in holes drilled for hydrogen storage.
EN
Although composite high-pressure tanks are a subject of growing interest, especially for hydrogen storage applications, a detailed structural reliability analysis still needs to be improved. This work aims to provide a probabilistic investigation of the mechanical response of composite high-pressure hydrogen storage tanks using the Monte Carlo Simulation method. A performance function based on the circumferential model of composite pressure cylinders is employed with five random design variables. According to the results, the internal pressure and the helical layer thickness are the foremost parameters significantly impacting the structural reliability of the tank, whereas, the helical layer thickness and winding angles have a minor influence. In addition, high coefficients of variation values cause the contraction of the safety margin potentially leading to the failure of the composite hydrogen high-pressure tank. The obtained results were validated with experimental tests available in the literature.
PL
Chociaż kompozytowe zbiorniki wysokociśnieniowe są przedmiotem rosnącego zainteresowania, zwłaszcza w zastosowaniach związanych z magazynowaniem wodoru, szczegółowa analiza niezawodności konstrukcji wciąż wymaga poprawy. Niniejsza praca ma na celu zapewnienie probabilistycznego badania odpowiedzi mechanicznej kompozytowych wysokociśnieniowych zbiorników do przechowywania wodoru przy użyciu metody symulacji Monte Carlo. Zastosowano funkcję wydajności opartą na modelu obwodowym kompozytowych cylindrów ciśnieniowych z pięcioma losowymi zmiennymi projektowymi. Zgodnie z wynikami, ciśnienie wewnętrzne i grubość warstwy obwodowej są głównymi parametrami istotnie wpływającymi na niezawodność konstrukcyjną zbiornika, podczas gdy grubość warstwy spiralnej i kąty uzwojenia mają niewielki wpływ. Ponadto duże wartości współczynników zmienności powodują kurczenie się marginesu bezpieczeństwa potencjalnie prowadząc do awarii kompozytowego zbiornika wysokociśnieniowego na wodór. Uzyskane wyniki zostały zweryfikowane z badaniami eksperymentalnymi dostępnymi w literaturze.
EN
The paper presents a technical and economic analysis of the power supply for a model industrial facility with the use of the most promising renewable energy sources (RES), supported by a hydrogen energy storage. This scenario was compared with the variants of supplying the facility directly from the grid and from RES without energy storage. A strategy was proposed for powering the plant aimed at maximising self-consumption of self-generated electricity. In this paper the importance of hybrid renewable energy systems (HRES) with hydrogen energy storage in the Polish Power System is pointed out. For the analysed industrial object, the modelling and optimisation of the systems were performed in the HOMER software, in terms of the lowest net present cost. Attention was also paid to the need to compress hydrogen and the associated electricity consumption.
PL
W artykule przedstawiono analizę techniczno-ekonomiczną zasilania modelowego obiektu przemysłowego z wykorzystaniem najbardziej perspektywicznych odnawialnych źródeł energii (OZE), wspomaganych magazynem wodoru. Scenariusz ten porównano z wariantami zasilania obiektu bezpośrednio z sieci oraz z OZE bez układu magazynowania energii. Zaproponowano strategię zasilania obiektu mającą na celu maksymalizację zużycia energii elektrycznej wytworzonej przez OZE na potrzeby własne. W artykule podkreślono znaczenie hybrydowych systemów OZE z wodorowym magazynem energii w Krajowym Systemie Elektroenergetycznym. Dla analizowanego obiektu przemysłowego, z wykorzystaniem oprogramowania HOMER przeprowadzono modelowanie i optymalizację systemów pod kątem najniższego kosztu bieżącego netto. Zwrócono uwagę na konieczność sprężania wodoru i związane z tym zużycie energii elektrycznej.
8
Content available remote Wytwarzanie wodoru z gazu ziemnego - analiza technologii wytwarzania
PL
W artykule omówiono aspekty technologiczne wytwarzania wodoru z gazu ziemnego (metanu). Istnieje wiele różnych technologii do tego celu, z których każda ma pewne zalety i ograniczenia. W artykule skupiono się na technologiach dotyczących produkcji wodoru z gazu ziemnego. Analizie zostały poddane trzy z tych technologii: reforming metanu (SMR), częściowe utlenianie (POX) oraz reforming autotermiczny (ATR). Każda z tych metod ma swoje charakterystyczne cechy i zastosowania.
EN
The article discusses the technological aspects of hydrogen production from natural gas (methane). There are various technologies available for this purpose, each with its own advantages and limitations. The focus of the article is on technologies related to hydrogen production from natural gas. Three of these technologies were analyzed in the article: Steam Methane Reforming (SMR), Partial Oxidation (POX), and Autothermal Reforming (ATR). Each of these methods has its distinctive features and applications.
9
Content available remote Wodór - niebiesko-zielona rewolucja
PL
W artykule przedstawiono cele i strategie wodorowe Unii Europejskiej i Polski na lata 2021-2030. Przeanalizowano metody wytwarzania i magazynowania wodoru. Zwrócono szczególną uwagę na możliwości dystrybucji wodoru i problemy związane z tym zagadnieniem. W opracowaniu zawarto również informacje na temat wpływu poszczególnych metod produkcji wodoru na aspekty środowiskowe, ze szczególnym zwróceniem uwagi na emisję dwutlenku węgla. Opisano również projekty związane z transportem i wytwarzaniem wodoru, realizowane przez polskie firmy.
EN
The article presents the hydrogen goals and strategy of the European Union and Poland for 2021-2030. The methods of hydrogen production and storage were analyzed. Particular attention was paid to the possibilities of hydrogen distribution and problems related to this issue. The study also includes information on the impact of individual methods of hydrogen production on environmental aspects, with particular emphasis on carbon dioxide emissions. Projects related to the transport and production of hydrogen implemented by Polish companies are also described.
PL
Europejski Urząd Patentowy (EPO) co roku honoruje inspirujących wynalazców za ich wybitny wkład w poprawę naszego codziennego życia nagrodą European Inventor Award w kilku kategoriach. W 2023 roku nagrodę w kategorii „badania” otrzymał francuski zespół naukowców z CNRS (Patricia de Rango, Daniel Fruchart, Albin Chaise, Michel Jehan i Natalia Skryabina) za opracowanie dysków do bezpiecznego i efektywnego sposobu magazynowania wodoru. Według wynalazców, dyski te zapewniają bezpieczne, zrównoważone i stabilne przechowywanie wodoru.
PL
W tej części sagi wodorowej przybliżymy tematykę magazynowania wodoru, stanowiącą wyzwanie dla jego dalszego skutecznego wdrażania w poszczególnych gałęziach przemysłu. Zatem pytanie, na które wspólnie poszukamy odpowiedzi brzmi: „Czy (a jeżeli tak), to w jaki sposób możemy bezpiecznie magazynować wodór?"
13
Content available Interakcja wodoru ze skałą zbiornikową
PL
Istnieje szereg metod magazynowania wodoru, do których zaliczyć można stosowanie zbiorników napowierzchniowych, wiązanie w wodorkach metali, nanorurkach węglowych, sieciach metaloorganicznych, ciekłych organicznych nośnikach wodoru czy adsorbentach. Jednak to podziemne magazynowanie wodoru w strukturach geologicznych (PMW) wydaje się kluczowe dla rozwiązania problemu długoterminowego magazynowania dużych ilości energii oraz zwiększenia stabilności sieci energetycznej i poprawy wydajności systemów energetycznych. Kryteria wyboru struktury do magazynowania wodoru obejmują szereg czynników technicznych, ekonomicznych, ekologicznych i społecznych. Jednym z najmniej rozpoznanych obszarów badawczych dotyczących PMW jest utrata wodoru in situ wywołana reakcjami geochemicznymi, które mogą wpływać na parametry petrofizyczne oraz wytrzymałość skał uszczelniających. W artykule przeanalizowano reakcje, jakie mogą wystąpić podczas magazynowania wodoru w strukturach geologicznych. Na podstawie studium literaturowego wskazano grupy minerałów, które mogą wpływać na zmiany pojemności magazynowej oraz na czystość gazu. Należą do nich w szczególności węglany, anhydryt, ankeryt i piryt, które stanowiąc skład matrycy skalnej lub cementu, mogą znacząco wpływać na potencjał magazynowy analizowanej struktury. Podczas kontaktu z wodorem minerały te ulegają rozpuszczeniu, w wyniku czego uwalniane są m.in. jony Fe2+, Mg2+, Ca2+, SO4 2−, HCO3 − , CO3 2−, HS− . Jony te wchodzą nie tylko w skład minerałów wtórnych, ale również na skutek dalszych reakcji z wodorem zanieczyszczają magazynowany nośnik energii domieszkami CH4, H2S i CO2, co ogranicza możliwości dalszego wykorzystania wodoru. Zwrócono również uwagę na możliwość wystąpienia rozpuszczania kwarcu, którego szybkość zależy od stężenia jonów Na+ w solance złożowej oraz pH. Ponadto pH wpływa na reaktywność wodoru i zależy w dużej mierze od temperatury i ciśnienia, które w trakcie pracy magazynu będzie podlegało częstym cyklicznym zmianom. W artykule omówiono wpływ warunków termobarycznych na analizowany proces, co powinno stanowić podstawę do szczegółowej analizy oddziaływania skała–wodór– solanka dla potencjalnej podziemnej struktury magazynowej.
EN
There are several hydrogen storage methods, including surface tanks, metal hydrides, carbon nanotubes, organometallic networks, liquid organic hydrogen carriers, or adsorbents. However, underground hydrogen storage (UHS) appears to be crucial in solving the problem of long-term storage of large amounts of energy, increasing the power grid's stability and improving energy systems' efficiency. The criteria for selecting a hydrogen storage structure include a number of technical, economic, ecological, and social factors. One of the least recognized research areas concerning UHS is the in situ loss of hydrogen caused by geochemical reactions that may affect sealing rocks' petrophysical parameters and strength. The article presents the reactions that may occur during hydrogen storage in geological structures. Based on a literature study, groups of minerals that may affect changes in storage capacity and gas purity have been indicated. These include, in particular, carbonates, anhydrite, ankerite, and pyrite in both the rock matrix and the cement. Upon contact with hydrogen, these minerals dissolve, releasing, among others, Fe2+, Mg2+, Ca2+, SO4 2– , HCO3 – , CO3 2– , HS– ions. These ions are not only components of secondary minerals but also, as a result of further reactions with hydrogen, pollute the stored energy carrier with admixtures of CH4, H2S and CO2, which limits the possibilities of further hydrogen use. The possibility of quartz dissolution, the rate of which depends on the concentration of Na+ ions in the reservoir brine and the pH, was also noted. Moreover, pH influences the reactivity of hydrogen and depends mainly on temperature and pressure, which will be subject to frequent cyclical changes during the operation of the storage. This review paper discusses the influence of thermobaric conditions on the analyzed process, what should be a base for detailed analysis of the rock-hydrogen-brine interaction for the potential underground storage structure.
14
Content available remote Wodór - paliwo przyszłości
PL
W artykule przedstawiono analizę ekonomiczną sposobów magazynowania wodoru. Wskazano również metody wytwarzania, magazynowania i transportowania wodoru. W opracowaniu zawarto również kwestię bezpieczeństwa związanego z użytkowaniem paliwa wodorowego oraz porównano koszty magazynowania oraz transportu.
EN
The article presents an economic analysis of hydrogen storage methods. Methods of producing, storing and transporting hydrogen are also indicated. The work also takes into account the safety issue related to the use of hydrogen fuel and compares the costs of storage and transport.
PL
W artykule przedstawiono przegląd wybranych metod zastosowania wodoru pochodzącego ze źródeł odnawialnych – rozważono finalne zastosowanie w energetyce, w transporcie indywidualnym i zbiorowym, w przemyśle oraz w gazownictwie poprzez zatłaczanie do sieci gazu ziemnego. Ocenie podlegała sprawność i systemowa efektywność łańcucha wodorowego z uwzględnieniem magazynowania pod ciśnieniem zależnym od sposobu wykorzystania finalnego. Sprawność procesu waha się od 24% (wykorzystanie wodoru w turbinach gazowych) do 60,8% (wykorzystanie w przemyśle lub gazownictwie), jednak w tym drugim przypadku produkowany nośnik podlega jeszcze dalszej konwersji energii. Porównując procesy zastąpione (np. zasilanie samochodów spalinowych, produkcja wodoru z reformingu) uzyskuje się ranking efektywności systemowej, w którym najkorzystniej wypada motoryzacja indywidualna (efektywność 144,8%, czyli mniejsza energochłonność względem obecnych paliw), w dalszej kolejności przemysł i transport autobusowy. Każdy z wariantów wykorzystania wodoru zapewnia także oszczędność emisji CO2, najwyższą dla motoryzacji indywidualnej i energetyki, a najmniejszą w przypadku zatłaczania wodoru do sieci gazu ziemnego.
EN
The paper reports selected methods of green hydrogen utilisation: for power generation, private cars and public transport, for industry and for blending with natural gas in distribution networks. The evaluated parameters comprise the efficiency and system performance of the hydrogen value chain, accounting for its storage under the pressure required for the given process. The process efficiency ranges from 24% (gas turbines) to 60.8% (industry, gas networks), however, in the latter case the produced hydrogen is not a final energy carrier. Another ranking is obtained if the analysis also comprises the corresponding replaced processes (e.g. cars using oil-based fuels, steam methane reforming for hydrogen production); in this case hydrogen-fuel cell passenger cars yield the best system performance (144.8%, i.e. the processis less energy consuming than the existing one), followed by industry and hydrogen-fuelled buses. Each method of hydrogen utilisation also provides a reduction in CO2 emission, the ranking is openedby passenger cars followed by power generation, and it is closed by hydrogen injection into natural gas grid.
16
Content available remote How can hybrid materials enable a circular economy?
EN
Climate change, critical material shortages and environmental degradation pose an existential threat to the entire world. Immediate action is needed to transform the global economy towards a more circular economy with less intensive use of fossil energy and limited resources and more use of recyclable materials. Recyclable materials and manufacturing techniques will play a critical role in this transformation. Substantial advancements will be needed to achieve a more intelligent materials design to enhance both functionality and enhanced sustainability. The development of hybrid materials combining functionality at macro and nano scales based on organic and inorganic compounds, that are entirely recyclable could be used for tremendous applications. In this mini-review, we provide the reader with recent innovations on hybrid materials for application in water, energy and raw materials sectors. The topic is very modern and after its deep study we propose a creation an international research centre, that would combine the development of hybrid materials with green manufacturing. We have highlighted a framework that would comprise critical themes of the initial research needed. Such a centre would promote sustainable production of materials through intelligent hybridisation and eco-efficient, digital manufacturing and enable a circular economy in the long term. Such activities are strongly supported by current environmental and economical initiatives, like the Green Deal, REPower EU and digital EU initiatives.
EN
Capacity fade and exchange current density of H2O/H2 system have been compared in conditions of long-standing cycling for powder composite electrodes based on (i) Sm0.4Zn0.6Fe2O4 ferrite spinel and (ii) LaNi4.5Co0.5 intermetallic compound. Changes of both quantities have been presented versus electrodes exposure time in strong alkaline solutions, at room temperature. Corrosion rate of semiconducting ferrite spinel is about 2.5 times lower than that of the intermetallic material. Consequently, capacity half-time is distinctly longer for the ferrite electrode. On the other hand, exchange current density of H2O/H2 system for ferrite spinel is extraordinarily low, on the level of 7 – 8 mA/g. It is suggested surface modification of the ferrite spinel material to improve its catalytic properties towards H2O/H2 redox system.
PL
Porównano spadki pojemności właściwej i gęstości prądu wymiany układu H2O/H2 spowodowane długotrwałym cyklowaniem dwu typów proszkowych elektrod kompozytowych: (a) spinelu ferrytowego Sm0.4Zn0.6Fe2O4 i (b) związku międzymetalicznego LaNi4.5Co0.5. Zmiany obydwu wielkości przedstawiono w funkcji czasu ekspozycji elektrod w silnie alkalicznych roztworach, przy temperaturze pokojowej. Szybkość korozji materiału półprzewodnikowego, jakim jest spinel ferrytowy okazała się ok. 2,5 razy mniejsza niż związku międzymetalicznego. W konsekwencji, czas połówkowego obniżenia pojemności jest wyraźnie dłuższy dla elektrody ferrytowej. Z drugiej jednak strony, gęstość prądu wymiany układu H2O/H2 dla elektrody ferrytowej jest wyjątkowo mała, na poziomie 7 – 8 mA/g. Zasugerowano modyfikację elektrody ferrytowej dla poprawy jej właściwości katalitycznych w odniesieniu do układu redoks H2O/H2.
18
Content available remote Przechowywanie wodoru w formie gazowej i ciekłej - zbiorniki wodoru
PL
Opracowanie opłacalnej i efektywnej metody przechowywania wodoru stanowi duże wyzwanie ze względu na jego niską gęstość energii w porównaniu z paliwami konwencjonalnymi. Z kolei takie właściwości wodoru, jak wybuchowość, palność oraz korozyjność stanowią wyzwanie pod kątem bezpieczeństwa. Zbiorniki wodoru powinny charakteryzować się wysoką pojemnością, prostotą technologiczną, niską ceną i bezpieczeństwem stosowania. Magazynowanie stacjonarne wodoru stosuje się głównie w dwóch celach: ograniczenia częstości, a tym samym kosztów dostaw i w celu gromadzenia wodoru jako zapasu awaryjnego. Inne zastosowanie mają zbiorniki wodoru w środkach transportu, pełniące funkcję „magazynu paliwa” dla ogniw paliwowych zasilających pojazdy o napędzie elektrycznym. Niniejszy artykuł dotyczy zbiorników do przechowywania wodoru, zarówno stacjonarnych, jak i dla środków transportu, który ze względu na stan może być przechowywany w formie gazowej lub płynnej.
EN
Transitioning to renewable energy is part of the answer to, on the one hand, growing industrial development and the rising demand for energy and, on the other, environmental concerns and the need to preserve fossil fuel resources for future generations. This research focuses on the potential for integrating hydrogen storage into a highly reliable renewable energy system. The purpose of this study is to determine the potential of renewable energy in an Iranian location, in a project that looks at a power grid in various connected and disconnected scenarios involving hydrogen storage. The energy potential is identified: annual production capacity is 2218818 kW, requiring a total investment outlay of US$697,624.
PL
Modelowano zachowanie gazu ziemnego w sieci przesyłowej w północnej Polsce w przypadku uwzględnienia w składzie gazu ziemnego dodatku wodoru pochodzącego z potencjalnych magazynów energii zlokalizowanych w kawernach solnych w celu prognozowania zmian parametrów przesyłanego gazu ziemnego w sieci przesyłowej.
EN
The behavior of H₂-contg. natural gas in transmission pipeline system in northern Poland was modeled to evaluate the possibility of the H₂ storage in salt caverns and to predict changes of the transmitted natural gas parameters.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.