Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  magazynowanie energii termicznej
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Jednym z najbardziej obiecujących rozwiązań w obszarze magazynowania energii termicznej jest wykorzystanie materiałów fazowo zmiennych PCM (phase change materials). Istotnym problemem w szerokim zastosowaniu PCM jest ich mała przewodność cieplna, negatywnie wpływająca na czas ładowania i rozładowania, a tym samym na efektywność całego procesu magazynowania. Celem badań była ocena wpływu położenia przegród w pojedynczym module magazynu na czas topnienia PCM. Badania symulacyjne przeprowadzono, wykorzystując metodę objętości skończonych za pomocą modelu entalpia-porowatość. Porównując moduły wielorurowe z przegrodami i bez przegród, można stwierdzić, że wprowadzenie pionowych przegród przyczynia się do zmniejszenia czasu topnienia o 59%. Zmiana orientacji przegrody na poziomą umożliwia zmniejszenie czasu topnienia o 22,7%. Przy zastosowaniu układu dwururowego warto zastosować przegrodę diagonalną, dla której czas topnienia jest najkrótszy.
EN
Simulation studies of the melting process of phase change materials (PCM) were carried out using the ANSYS Fluent package using the fixed grid enthalpy porosity method. The considered geometric model was a rectangular shell-and-tube storage structure with a partition in various positions, in a single- or 2-tube system. Modules with partitions were compared to modules without partitions. Placing vertical partitions shortened the PCM melting time by 59%, while changing the orientation of the partition to horizontal shortened the melting time by 22.7%. The shortest melting time was obtained for a 2-tube system with a diagonal partition.
PL
Główną wadą organicznych materiałów fazowo zmiennych, które są coraz częściej stosowane w magazynach energii termicznej, jest ich niska przewodność cieplna. Zmniejszenie oporu cieplnego po stronie medium magazynującego realizowane poprzez dodanie nanomateriałów to jeden ze sposobów na poprawę efektywności procesu wymiany ciepła. Przeprowadzono badania entalpii i temperatury przemiany fazowej, ciepła właściwego oraz czasu przemiany fazowej w trakcie topnienia i krzepnięcia komercyjnie dostępnego materiału fazowo zmiennego z dodatkiem dwóch rodzajów nanoproszków (a-Fe₂O₃ i a-Al₂O₃) o udziale masowym 0,8%, 6,5% oraz 13%. Nie stwierdzono znacznego obniżenia entalpii i temperatury przemiany fazowej dla każdej z przygotowanych próbek. Istotnym negatywnym efektem towarzyszącym przy wzroście udziału nanomateriału był znaczny wzrost czasu przemiany fazowej w trakcie topnienia.
EN
The enthalpy and phase transition temp., sp. heat and phase transition time were detd. during melting and solidification of com. available phase transition material and with the addn. of 2 types of nanopowders (a-Fe₂O₃, a-Al₂O₃) in the amt. of 0.8%, 6.5 % or 13%. No significant decrease in enthalpy and phase transition temp. was observed for each of the prepared samples. A significant neg. effect accompanying the increase in nanomaterial content was a significant extension of the phase transition time during melting.
PL
W pracy przedstawiono wyniki numerycznego modelowania transportu ciepła i masy w podziemnym magazynie energii termicznej. Podziemny magazyn energii stanową górotwór o określonej pojemności cieplnej oraz otworowe wymienniki ciepła o konstrukcji pojedynczej U-rurki, łączące magazyn z odbiorcą. Obiektem badań jest podziemny magazyn energii termicznej od kilku lat pracujący w instalacji dostarczającej ciepło do osiedla domów jednorodzinnych w miejscowości Okotoks w Kanadzie. Celem pracy jest opracowanie numerycznego modelu transportu ciepła i masy w magazynie oraz określenie efektywności magazynu w perspektywie kilkunastu lat eksploatacji. Analizie poddano piętnaście lat eksploatacji podziemnego magazynu energii. Do realizacji celu pracy zastosowano pakiet ANSYS oraz nowy element skończony o wielu stopniach swobody (MDF). W pracy przedstawiono wyniki w postaci rozkładów temperatury w magazynie dla cyklu magazynowania i odbioru energii oraz określono efektywność magazynu w każdym roku eksploatacji.
EN
The paper presents the results of numerical modelling of heat and mass transport in the seasonal underground thermal energy storage. The underground thermal energy storage consisted of two basic elements: a geological medium guaranteeing thermal capacity of the storage, and a single U-tube borehole heat exchanger, which links energy storage with the consumer. The object of the research is the underground thermal energy storage in Okotoks, Canada which has worked as heat distribution system for a single-family houses for several years. The aim of this work is to developed the numerical model of heat and mass transport in the energy storage and determine the long-term efficiency of the thermal energy storage. Fifteen years of operation of the underground thermal energy storage were analysed. The ANSYS package with a new finite element with multi degree of freedom (MDF) were used to achieve the aim of this work. The paper presents the results in the form of temperature distributions in the whole computational domain during charging and discharging period and the storage efficiency for each year of simulation.
PL
W pracy przedstawiono badania wpływu rodzaju i miejsca przyjętych warunków brzegowych w symulacji procesu wymiany ciepła w podziemnym magazynie energii termicznej. Podziemny magazyn energii stanową górotwór o określonej pojemności cieplnej oraz otworowe wymienniki ciepła łączące magazyn z odbiorcą. Obiektem badań jest magazyn energii termicznej składający się z dziewięciu otworowych wymienników ciepła o konstrukcji pojedynczej U-rurki. Celem pracy jest zbadanie wpływ miejsca i rodzaju przyjętego warunku brzegowego w numerycznej symulacji procesu podziemnego magazynowania energii. Analizie poddano modele numeryczne z przyjętym na powierzchni bocznej obszaru obliczeniowego warunkiem brzegowym Dirichleta, Neumanna oraz Robina. O miejscu przyjęcia wymienionych warunków brzegowych decyduje promień i głębokość rozpatrywanego obszaru obliczeniowego. Do realizacji celu pracy zastosowano technikę planowania eksperymentu oraz metodologię powierzchni odpowiedzi. Obliczenia numeryczne przeprowadzono z wykorzystaniem pakietu ANSYS stosując oryginalny element skończony o wielu stopniach swobody (MDF).
EN
The paper presents research on the influence of the assumed boundary conditions in the simulation of the heat transport process in the borehole thermal energy storage. The borehole thermal energy storage consisted of two basic elements: a geological medium guaranteeing thermal capacity of the storage, and a single U-tube borehole heat exchanger, which links energy storage with the consumer. The object of the research is the borehole thermal energy storage consist of nine U-tube borehole heat exchanger. The aim of the work is to examine the influence of the place and type of the boundary condition assumed in the numerical simulation of the borehole thermal energy storage. Models were analysed with the Dirichlet, Neumanna and Robin boundary condition assumed on the lateral surface of the computational domain. The radius and depth of the considered calculation domain determine the place of application of the above-mentioned boundary conditions. The design of experiment and the response surface methodology were used to achieve the objectives of this work. Numerical calculations were carried out using the ANSYS package with a new original finite element with multi degrees of freedom (MDF).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.