Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 24

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  magazynowanie energii cieplnej
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
The authors present a general idea of using inorganic salt hydrates in solar installations. A key role in this selection is played by thermophysical parameters, so the authors review their test methods and in turn characterize them for the most promising salt hydrates. Next, the authors describe the advantages and disadvantages of inorganic salt hydrates and indicate possibilities for their improvement. The use of salt hydrate converters in PV installations significantly improves the efficiency of photovoltaic modules. We show that at least 18 salt hydrates are promising for solar applications with the best ones being Sodium Hydrogen Phosphate Dodecahydrate, Sodium Carbonate Decahydrate and Calcium Chloride Hexahydrate. The selection of a test method for determining the thermophysical parameters of salt hydrates should be individual depending on the research objective. Comparing the methods presented, we believe that it is the DSC and DTA methods that provide the most accurate and repeatable results.
PL
Autorzy przedstawiają ogólną koncepcję wykorzystania nieorganicznych hydratów solnych w instalacjach solarnych. Kluczową rolę w tym doborze odgrywają parametry termofizyczne, dlatego autorzy dokonują przeglądu metod ich badania i kolejno charakteryzują je dla najbardziej obiecujących hydratów solnych i ich mieszanin. Następnie autorzy opisują zalety i wady nieorganicznych hydratów solnych oraz wskazują możliwości ich udoskonalenia. Zastosowanie konwerterów hydratów solnych w instalacjach PV znacząco poprawia sprawność modułów fotowoltaicznych. Wykazano, że co najmniej 18 hydratów soli i ich mieszanin jest obiecujących dla zastosowań solarnych ze względu na korzystne parametry termofizyczne, przy czym najlepsze z nich to dodekahydrat wodorofosforan sodu, dekahydrat węglanu sodu i heksadydrat chlorku wapnia. Z przeglądu literatury wynika, że wybór metody badawczej do określenia parametrów termofizycznych hydratów soli powinien być indywidualny w zależności od celu badań. Porównując przedstawione metody, stwierdzono, że to właśnie metody DSC i DTA dają najbardziej dokładne i powtarzalne wyniki.
PL
Lata temu popularnym sposobem w Polsce były przeróbki węglowych pieców kaflowych na elektryczne. W tańszej, nocnej taryfie cegły szamotowe ogrzewał prąd, ciepło oddawały za dnia. Potrzebę magazynowania energii cieplnej odczuwa każdy, w skali mikro i makro. Dlatego rozwijają się coraz potężniejsze i sprawniejsze sposoby magazynowania ciepła, także na skalę przemysłową.
3
Content available remote Experimental studies of packed-bed Thermal Energy Storage system performance
EN
This paper contains an experimental analysis of a heat storage tank's heat loss and exergy efficiency using a basalt porous bed as a storage material. The basic parameters of the laboratory bench with measuring equipment are presented and the experimental procedure is discussed. The methodology for evaluating the energy potential of the heat storage process for large-scale energy storage systems is described. The main novelty of the presented system is the application of the slenderness of the heat accumulator, which corresponds to the development of the system in a post-mining shaft. Based on the analysis of the experiment, the exergy cycle efficiency of the heat storage unit was determined to equal 52.3%, and the energy efficiency equal to 96.6%.
EN
The phase change materials (PCM) are widely used in several applications, especiallyi n the latent heat thermal energy storage system (LHTESS). Due to the very low thermal conductivity of PCMs. A small mass fraction of hybrid nanoparticles TiO 2–CuO (50%–50%) is dispersed in PCM with five mass concentrations of 0%, 0.25%, 0.5%, 0.75% and 1 mass % to improve its thermal conductivity. This article is focused on thermal performance of the hybrid nano-PCM (HNPCM) used for the LHTESS. A numerical model based on the enthalpy-porosity technique is developed to solve the Navier-Stocks and energy equations. The computations were conducted for the melting and solidification processes of the HNPCM in a shell and tube latent heat storage (LHS). The developed numerical model was validated successfully with experimental data from the literature. The results showed that the dispersed hybrid nanoparticles improved the effective thermal conductivity and density of the HNPCM. Accordingly, when the mass fraction of a HNPCM increases by 0.25%, 0.5%, 0.75% and 1 mass %, the average charging time improves by 12.04 %, 19.9 %, 23.55%, and 27.33 %, respectively. Besides, the stored energy is reduced by 0.83%, 1.67%, 2.83% and 3.88%, respectively. Moreover, the discharging time was shortened by 18.47%, 26.91%, 27.71%, and 30.52%, respectively.
EN
The paper presents the adiabatic installation of compressed gases energy storage. The authors present the results of analyzes for this type of installation due to the selection of thermal storage material. The simulations were carried out for basalt, granite and ceramics (alumina) as well as for porosity value from 0.375 to 0.39 of basalt-filled reservoirs in Thermal Energy Storage (TES) installation. Characteristics of outlet air temperature, air pressure drop amount of energy stored and external heat losses as a time functions during the charging phase are presented. The research indicated that due to the lowest density and average heat capacity of the materials studied, granite has the fastest and most intense physical exit loss from the storage tank which was approximately 1100 W. However, there was no significant effect on air pressure drop depending on the chosen accumulation materials. The effect of rock bed porosity on the pressure drop of flowing air was investigated. For a constant mass flow rate, pressure drop values ranging from 2200 Pa to 6200 Pa were obtained depending on the porosity value.
EN
Low-temperature aquifer thermal energy storage (LT-ATES) is widely used on an industrial scale in the Netherlands. In Poland, where the Polish Lowlands were recently typed as a promising area in this respect, this method has not yet been tested. Because of the complex structure of subsurface geological formations of most parts of these lowlands, assessment of the technical and economic feasibility of this type of energy storage requires extensive investigations. In this study, the ATES potential of an area of a geodetic precinct size was assessed using the basic documentation, especially the “Hydrogeological Map of Poland” with explanations. As a study area, the Kościerzyna morainic island was selected which is the main pole of development of southern Kashubia. The results of the assessment show that, in addition to economic advantages, this area has favourable hydrogeological conditions for LT-ATES due to its location between the Kashubian Lake District morainic complex and the Tuchola Forest outwash plain. In this area, subject to appropriate engineering research, the investment of LT-ATES systems with a few megawatt cooling capacity is entirely possible. This paper presents the most important conclusions of the study which was submited to the archives of the Polish Geothermal Association in Kraków at the beginning of June 2020 (Lemoine, 2020).
PL
Celem niniejszej pracy było wskazanie podstawowych parametrów, jakimi powinny się charakteryzować materiały zmiennofazowe (PCM) wykorzystywane w technice instalacyjno-budowlanej. W artykule podano charakterystyczne parametry cieplne różnych związków chemicznych pełniących funkcję PCM. Dobranie materiału o właściwościach dopasowanych do celu, np. magazynowania nadwyżek ciepła występujących w pomieszczeniu, pozwala na uzyskanie wymiernych korzyści energetycznych. Dodatkowo w artykule wskazano możliwe sposoby wkomponowania materiału zmiennofazowego w komponenty budowlane. Spośród dostępnych technologii to mikrokapsulacja umożliwia wyeliminowanie w największym stopniu podstawowych problemów związanych ze specyfiką działania PCM, tj. wycieki, zmiany objętości związane ze zmianą fazy czy niestabilność konstrukcji.
EN
The aim of this study was to indicate the basic parameters that should characterized the phase change materials (PCM) used in installation and construction technology. The paper presents characteristic thermal parameters of various chemical compounds that play the role of PCM. The selection of materials with properties tailored to the purpose, e.g. storing excess heat in the room, allows for measurable energy benefits. Additionally, the material indicates possible ways of integrating the phase change material into building components. Among the available technologies, microcapsulation is the best solution to eliminate the basic problems related to the specificity of PCM operation, i.e. leakages, volume changes related to phase change, structure stability.
8
Content available remote Thermal energy storage in rock bed - CFD analysis
EN
This article reports on an analysis of the possibility of storing thermal energy in a rock bed. The calculations were made in Ansys CFX 18.0 CFD. The analysis determined the charging time of a packed bed of granite rocks in variable flow conditions for the assumed geometry of the energy storage system. The model was 2-dimensional, consisting of two domains connected by an interface. The packed bed was modelled using a porous model approach. The inlet velocity was varied in the range 0.25-4 m/s. The total charging time was 70 to 1100 min, depending on inlet velocity.
EN
Many fossil fuel fired municipal heating plants have been upgraded to cogeneration systems through installation of biomass fired cogeneration modules. This paper shows the effects of installing an Organic Rankine Cycle (ORC) technology based module in a plant with coal fired water boilers. Current problems related to operation of the integrated system are presented and discussed. Special attention is given to the volatility of the main operational parameters, which impacts the economic performance of the project. With a view to enhancing performance, new equipment such as heat storage and a district heating water cooler are proposed and examined. A mathematical simulation model and optimization algorithm for thermal energy storage capacity sizing were developed using the commercial software EBSILON® Professional. The model was calibrated and validated with real measurement data from the SCADA system of the plant. Results of simulations revealed potential annual financial benefits related to savings of chemical energy of fuels and selling excess electricity on the balancing market. The results of these simulations prove that proposed modifications of the technological system structure could be a good option for increasing investment profitability at the current level of fuel and energy prices.
EN
This work presents an experimental study of thermal energy storage by the use of PCM. The aim of the study was to establish the influence of the different inlet temperature of heat transfer fluid (HTF) and the different Reynolds number of HTF on the intensity of the charging and discharging processes. The PCM used in this study was stearic acid and water was used as HTF. A copper helical coil mounted in a cylindrical container served as a heat transfer surface.
PL
W artykule przedstawiono informacje geologiczne i hydrogeologiczne o płytkich poziomach wodonośnych w zachodniej części województwa mazowieckiego, w obrębie miasta i gminy Sochaczew, w aspekcie lokalizacji projektowanego otworu geotermalnego Sochaczew IG-1 oraz (wstępnie) o ich potencjalnej przydatności dla magazynowania energii cieplnej, tj. w jednym z przyszłych wariantów systemu ATES. Analizowane informacje pochodziły z bazy danych o obiektach, które zgromadziła Państwowa Służba Hydrogeologiczna (PSH). Uwzględniając dane PSH, zależnie od parametrów pracy projektowanego otworu geotermalnego oraz od charakterystyki przyszłych odbiorców energii z systemu ATES, a także w nawiązaniu do doświadczeń europejskich, stwierdzono możliwość budowy któregoś z wariantów systemu ATES (np. wykorzystującego do magazynowania energii jedną lub dwie warstwy wodonośne). Wstępnie wskazano rejon, w którym można by skorzystać z takich dwóch warstw po przeprowadzeniu dokładniejszych badań, np. geofizycznych oraz po testach i obserwacjach w przynajmniej jednej badawczej studni sondażowej.
EN
The article presents geological and hydrogeological data about shallow aquifers in the western part of the Mazovian province within the town and commune of Sochaczew, in terms of the location of the planned Sochaczew IG-1 geothermal borehole and in terms of its potential for aquifer thermal energy storage (ATES). The analyzed data was from the drilled wells database of the Polish Hydrogeological Survey (PSH). Taking the PSH data into account, parameters of the planned geothermal boreholes, the characteristics of future energy consumers of the ATES as well as to European experiences, it has been found that it is possible to apply one of the variants of the ATES system (e.g. using one or two aquifers for storage). Initially the area was selected where two aquifers could be applied for the ATES system after detailed geophysical studies, tests and observations in at least one exploratory well.
PL
Wstępne wyniki pomiarów instalacji pilotażowej powstałej w ramach projektu MERITS świadczą o możliwości zastosowania kompaktowego, sezonowego magazynowania energii pochodzącej z promieniowania słonecznego z wykorzystaniem metody termochemicznej. Szczególnym osiągnięciem jest przeniesienie po raz pierwszy technologii ze skali laboratoryjnej do rzeczywistej.
13
Content available Heat balance of the military vehicle
EN
In modern combat vehicles there are very often used observation devices with the capability of operating in the infrared. They allow detecting heat emission. It is very important to reduce such situation on the battlefield; therefore generated heat masking or reducing systems are used. The article presents the heat balance of the military vehicle, impact of heat amount on detectability and solutions reducing or changing the thermal image which impedes recognition.
PL
Magazynowanie energii cieplnej pozyskanej ze źródeł odnawialnych to obiecująca technologia mająca poprawić wydajność energetyczną budynków. Jest to obecnie popularny temat wielu badań dążących do doboru optymalnych parametrów magazynu, takich jak jego rozmiar, rodzaj wypełnienia, lokalizacja i sposób instalacji w budynku. Każdy z tych czynników ma istotny wpływ na zmniejszenie zapotrzebowania energetycznego zarówno w sektorze budownictwa prywatnego, jak i komercyjnego. Niniejsza praca stanowi przegląd istniejących systemów magazynowania ciepła oraz rozwiązań, za pomocą których wkomponowane zostały one w bryłę budynku.
EN
Storing thermal energy gained from renewable sources is a promising technology to improve the energy efficiency of buildings. It is now a popular theme of many researches focused on choosing optimal parameters of storage, such as its size, filling type, location and the way of installation in the building. Each of these factors have a significant impact on reducing energy needs, both in the private and commercial sector. This paper is a review of the existing heat storage systems and ideas how they were integrated with the building structure.
EN
The aim of this document is to present the topic of modeling district heating systems in order to enable optimization of their operation, with special focus on thermal energy storage in the pipelines. Two mathematical models for simulation of transient behavior of district heating networks have been described, and their results have been compared in a case study. The operational optimization in a DH system, especially if this system is supplied from a combined heat and power plant, is a difficult and complicated task. Finding a global financial optimum requires considering long periods of time and including thermal energy storage possibilities into consideration. One of the most interesting options for thermal energy storage is utilization of thermal inertia of the network itself. This approach requires no additional investment, while providing significant possibilities for heat load shifting. It is not feasible to use full topological models of the networks, comprising thousands of substations and network sections, for the purpose of operational optimization with thermal energy storage, because such models require long calculation times. In order to optimize planned thermal energy storage actions, it is necessary to model the transient behavior of the network in a very simple way – allowing for fast and reliable calculations. Two approaches to building such models have been presented. Both have been tested by comparing the results of simulation of the behavior of the same network. The characteristic features, advantages and disadvantages of both kinds of models have been identified. The results can prove useful for district heating system operators in the near future.
EN
Nanofluids are considered to be a new generation of coolants, both in single- and two phase systems. Furthermore, nanofluids or nanocomposites may be used as a media in thermal energy storage (TES) in such systems as sensible heat storage (SHS) and phase change materials (PCM). In the SHS systems the dominating mechanism of the heat transfer is natural convection. However, in the literature only a few investigations of free convection of nanofluids have been discussed. This paper presents preliminary results of the experimental investigation of natural convection heat transfer of glycol-Al2O3 nanofluid from horizontal tube.
PL
Nanociecze uważane są za nową generację czynników chłodzących w układach jednofazowych oraz dwufazowych. Ponadto, nanociecze i nanokomponenty mogą być użyte jako środki magazynowania energii cieplnej (TES) w takich systemach jak SHS czy PCM. W systemach wykorzystujących ciepło jawne dominującym sposobem wymiany ciepła jest konwekcja swobodna. Mimo tego, jak dotąd, przeprowadzono niewiele badań eksperymentalnych i numerycznych dotyczących zjawiska konwekcji swobodnej nanocieczy. W pracy zaprezentowano wstępne wyniki badań eksperymentalnych wymiany ciepła podczas konwekcji swobodnej nanocieczy glikol-Al2O3 na poziomej rurce.
EN
Underground Thermal Energy Storage (UTES) is a powerful set of solutions that allows efficient management of thermal energy sources, both heat and cold, the demand of which is subjected to seasonal variations. Underground can store available in excess heat or cold for periods of up to several months and use whenever needed, especially in the opposing season. Sources of thermal energy that can be stored underground are, among others: solar thermal energy, cold winter air, waste heat from ventilation and waste heat from industrial processes. Two primary methods of under ground energy storage are Aquifer Thermal Energy Storage (ATES) where water reservoir is a thermal energy accumulator and Borehole Thermal Energy Storage (BTES) where rock formation acts as a heat/cold store. UTES allows to minimizing consumption of fossil fuels and therefore reduce costs of energy purchase, limiting the amount of greenhouse gases emission into atmosphere, and increasing energy security.
PL
Magazynowanie energii jest nieodłącznym elementem towarzyszącym produkcji energii ze źródeł odnawialnych z powodu niestabilności i nieprzewidywalności ilości wytworzonej energii, która ściśle zależy od warunków atmosferycznych. Gromadzić można energię elektryczną, lecz także i cieplną. W Europie największa część energii zużywanej to właśnie energia cieplna. Sposobów magazynowania energii jest bardzo wiele poprzez zasobniki chemiczne, elektryczne, mechaniczne aż do magazynów energii cieplnej. Energię cieplną magazynuje się dzięki takim zjawiskom jak: ciepło właściwe materiałów, przemiany fazowe i reakcje chemiczne zachodzące w materii. Magazyny energii z powodzeniem mogą współpracować z pompami ciepła. Naturalne magazyny energii (grunt, woda) mogą być wykorzystywane jako dolne źródło ciepła w układzie pomp cieplnych, w odniesieniu do innych instalacji OZE np. kolektorów słonecznych mogą stanowić miejsce zrzutu nadmiaru ciepła.
EN
Energy storage is an integral part accompanying production of energy from renewable sources caused instability and unpredictability of the amount of energy produced, which is highly dependent on weather conditions. It may be collected electricity, but also heat. In Europe, the largest part of the energy consumed is just the heat. The ways of energy storage it is many through chemical, electrical, mechanical to thermal energy storage. The thermal energy is stored by such phenomena as heat capacity of materials, phase transitions and chemical reactions in the matter. Energy storage can successfully collaborate with heat pumps. Natural energy storage (land, water) can be used as a heat source in a heat pump in relation to other RES installations, eg. Solar collectors can be a place of discharge excess heat.
19
Content available Thermal performance of energy storage vessel
EN
This paper is focused on an analysis of thermal energy performance of storage vessel[4]. This storage system consists of two concentric cylindrical containers made of concrete, between these two layers there is a thermal insulation layer – the vacuum-like one. The inner container is filled by water intended to operate as a heat accumulation medium and temperature of the water is assumed as 90ºC. The cooling process was simulated for a period of 30 days in the ANSYS software environment. The simulation showed that the analyzed type of heat storage vessel is able to keep the thermal Energy relatively efficiently.
EN
Thermal energy storage and temperature stabilization is very important in many engineering applications. There are three kinds of thermal energy storage: sensible heat, latent heat and reversible chemical reaction heat. Phase change materials (PCM) absorb, store and release large amounts of energy in the form of latent heat, at constant temperature, called the transition temperature. Many innovative applications could be found for phase change materials in an increasingly growing field, which is protection of the environment through energy saving, use of renewable energy sources, especially solar, raising the efficiency of equipment and technologies in the industry, construction and transport. Main potential possibilities of using PCM materials are as follows: accumulation heat from the solar collectors and other renewable sources, the accumulation of heat in structural elements of buildings, the food industry. Therefore the applications of the PCM are of promising perspectives, especially in some climate regions. In the present paper, the experience of phase change material use for the specific applications and the results of its thermophysical properties examination are presented.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.