Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  macrophage polarization
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Burn wounds are a unique type of injury that can affect the entire body and cause irreversible damage. They are characterized by significant morbidity and mortality due to the pathophysiology of the healing process manifested by unremitting inflammation, leading to a critical need to search for new treatments. This study focuses on the development of drug delivery systems in the form of lipid microparticles loaded with quercetin, as an agent to combat acute inflammation in burn wounds. We aimed to explore the effect of quercetin in modulating macrophage polarization from proinflammatory (M1) to anti-inflammatory (M2) phenotype. The absence of a cytotoxic effect of the produced particles on macrophages, as well as the lack of negative effects on their morphology was proven. The study confirmed the ability of quercetin and quercetin-loaded lipid microparticles to modulate macrophage polarization in an anti-inflammatory direction, based on the analysis of their surface markers expression performed with the use of flow cytometry. With the use of quercetin, the expression of M2 specific marker increased. Furthermore, better results were obtained for encapsulated quercetin, confirming the necessity of encapsulation to increase the therapeutic potential.
EN
The natural wound healing process consists of four basic phases: homeostasis, inflammation, proliferation, and remodelling. Macrophages play an important role in the body’s response to biomaterials, as they are modulators of the wound healing process and can polarize into different phenotypes capable of inducing both deleterious and beneficial effects on tissue repair. Curcumin (CU) is known for its anti-inflammatory properties and has the potential to treat diabetic foot ulcers, but it should be delivered to wounds in a controlled manner. In this study, the encapsulation of curcumin in polymeric microparticles based on poly(sebacic anhydride) (PSA) was developed using an emulsification method. PSA-based microparticles containing different concentrations of CU were obtained: 0% weight (wt). CU (unloaded microparticles), 5, 10, and 20 wt% CU. CU encapsulation efficiency and loading were determined using a fluorescence-based calibration curve method and semi-quantitative Fourier-transform infrared spectroscopy (FTIR) analysis. The potential cytotoxicity of the obtained biomaterials in contact with primary human macrophages and their susceptibility to polarization from the M1 (pro-inflammatory) phenotype to the M2 (antiinflammatory) phenotype were evaluated. The morphology of cells cultured in contact with polymeric microparticles was evaluated using phalloidin red and 4′,6-diamidino2-phenylindole (DAPI) staining. Macrophage phenotype was assessed using flow cytometry. The obtained biomaterials showed no cytotoxic effect on primary human macrophages. Flow cytometry studies showed enhanced polarization of macrophages into anti-inflammatory M2 phenotype when exposed to microparticles loaded with CU and CU powder as compared to unloaded microparticles
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.