W przedstawionych w artykule badaniach podjęto próbę zastosowania sztucznych systemów immunologicznych (SSI) do optymalizacji, klasyfikacji i detekcji anomalii. Skuteczność algorytmów charakterystycznych dla SSI testowano na wybranych zadaniach związanych z diagnostyką obrabiarki i procesu skrawania. W zadaniu optymalizacji analizowano możliwość doboru wartości parametrów klasyfikatora rozmytego zużycia narzędzi skrawających oraz rozpatrywano zagadnienie diagnostyki odkształceń termicznych szlifierki. Zadanie klasyfikacji zużycia narzędzi rozwiązywano także przez bezpośrednie zastosowanie klasyfikatora immunologicznego. Detekcja anomalii sprawdzała się natomiast w poszukiwaniach zakłóceń w sygnałach reprezentujących zmiany temperatury silnika napędu posuwowego obrabiarki HSM oraz sygnałach reprezentujących pomiary drgań z zastosowaniem wibrometru laserowego.
EN
The paper presents application of artificial immune systems (AIS) for optimisation, classification and anomaly detection. The effectiveness of AIS-specific algorithms has been tested based on some tasks related to machine tool and cutting process diagnostics. In the case of optimisation, determination of parameters of fuzzy logic classifier applied for cutting tool wear identification is presented together with a problem of grinder thermal deformation diagnostics. The same classification task was analyzed via direct application of AIS. Finally, the results achieved with the negative selection algorithm while detecting anomalies in signal representing temperature of feed drive motor and signal representing vibration velocities are depicted.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.