Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  młyn kulowy wysokoenergetyczny
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Barium ferrite powders prepared by milling and annealing
EN
Purpose: Microstructure and magnetic properties analysis of barium ferrite powder obtained by milling and heat treatment. Design/methodology/approach: the milling process was carried out in a vibratory mill, which generated vibrations of the balls and milled material in side the container during which their collisions occur. After milling process the powders were annealed in electric chamber furnace. The X-ray diffraction methods were used for qualitative phase analysis of studied powder samples. The distribution of powder particles was determined by a laser particle analyser. The magnetic hysteresis loops of examined powder material were measured by resonance vibrating sample magnetometer (R-VSM). Findings: The milling process of iron oxide and barium carbonate mixture causes decrease of the crystallite size of involved phases. The X-ray investigations of tested mixture milled for 30 hours and annealed at 950 degrees centigrade enabled the identification of hard magnetic BaFe12O19 phase and also the presence of Fe2O3 phase in examined material. The Fe2O3 phase is a rest of BaCO3 dissociation in the presence of Fe2O3, which forms a compound of BaFe12O19. The best coercive force (HC) for mixture of powders annealed at 950 degrees centigrade for 10,20 and 30 hours is 349 kA/m, 366 kA/m and 364 kA/m, respectively. The arithmetic mean of diameter of Fe2O3 and BaCO3 mixture powders after 30 hours of milling is about 6.0 micrometres. Practical implications: The barium ferrite powder obtained by milling and annealing can be suitable components to produce sintered and elastic magnets with polymer matrix. Originality/value: The results of tested barium ferrite investigations by different methods confirm their utility in the microstructure and magnetic properties analysis of powder materials.
2
EN
Purpose: Microstructure and magnetic properties analysis of barium ferrite powder obtained by milling and heat treatment Design/methodology/approach: The milling process was carried out in a vibratory mill, which generated vibrations of the balls and milled material inside the container. After milling process the powders were annealed in electric chamber furnace. The X-ray diffraction methods were used for qualitative phase analysis of studied powder samples. The morphology of Fe2O3 and BaCO3 powders after milling was analyzed using the scanning electron microscopy (SEM) method. The distribution of powder particles was determined by a laser particle analyzer. The magnetic hysteresis loops of examined powder material were measured by resonance vibrating sample magnetometer (R-VSM). Findings: The milling process of iron oxide and barium carbonate mixture causes decrease of the crystallite size of involved phases and leads to increase the content of Fe2O3 phase and decrease of BaCO3 content. Milling process causes enriching of surface layer of powder particles by Fe2O3. The X-ray investigations of tested mixture milled for 30 hours and annealed at 950*C enabled the identification of hard magnetic BaFe12O19 phase and also the presence of Fe2O3 phase in examined material. The Fe2O3 phase is a rest of BaCO3 dissociation in the presence of Fe2O3, which forms a compound of BaFe12O19. The best coercive force for the mixture of powders annealed at 950oC for 10, 20 and 30 hours is 349 kA/m, 366 kA/m and 364 kA/m, respectively. From morphology images and distribution of powder particle size it can be concluded, that the size of tested powder particles increases with increasing time of milling process. The increase of milling time up to 20 hours leads to joining of smaller particles in bigger ones; agglomerates are formed. Practical implications: The barium ferrite powder obtained by milling and annealing can be suitable component to produce sintered and elastic magnets with polymer matrix. Originality/value: The results of tested barium ferrite investigations by different methods confirm their utility in the microstructure and magnetic properties analysis of powder materials.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.