In situ resource utilization (ISRU) activities are receiving increasing attention, both from space agencies and among the international science and industrial community. Prominent examples of ongoing ISRU space programs are the NASA Artemis program and the Terrae Novae program run by the European Space Agency. In technical sciences, there are at least three groups of activities related to ISRU: prospecting bodies in the context of space missions, technological investigations related to surface infrastructure and operations, and conceptual analyses of future mining activities. The present paper belongs to the third group and brings new insights into a potential open pit mine operating on the Moon. There are several novel contributions: the definition of the objectives of the mine, based on economic indicators; a conceptual description of a pit architecture dedicated to excavating ilmenite-rich feedstock; and a qualitative and quantitative description of the chosen processes and the mine’s topology. In the paper, there are also added links to other papers connected with ISRU activities.
Habitaty księżycowe są konstrukcjami, których zadaniem jest zapewnienie w ich wnętrzu warunków przyjaznych człowiekowi. Środowisko Księżyca znacznie różni się od ziemskiego, przez co wymagania stawiane tym konstrukcjom są inne niż wobec znanych nam obiektów mieszkalnych. Konstrukcje habitatów można podzielić na trzy klasy: konstrukcje gotowe (klasa I), konstrukcje prefabrykowane (klasa II) oraz konstrukcje wznoszone na powierzchni Księżyca, w myśl koncepcji ISRU (klasa III). Z perspektywy budownictwa najciekawsze rozwiązania zawiera klasa III. Propozycje habitatów zaliczanych do tej klasy często mają postacie kopuł lub torusów, a technologie ich wznoszenia opierają się między innymi na druku 3D z wykorzystaniem materiałów wytwarzanych na bazie regolitu księżycowego.
EN
Function of lunar habitats structures is to ensure human friendly environment inside. Lunar environment differs from the Earth one, thus also requirements for lunar habitats differ from requirements for well-known residential buildings. Lunar habitats can be divided into three Classes: Pre-Integrated (Class I), Pre-Fabricated (Class II), and In-Situ Derived and Constructed in line with practice called ISRU (Class III). From Civil Engineering point of view the most interesting is Class III. Concepts of habitats belonging to this class are often dome-shaped or toroidal structures, which technology of erection includes among others 3D print methods with usage of lunar regolith-based materials.
Knowing the impact of technical solutions on the drilling process is a very important element in the process of the exploration of new fossil fuel deposits. Drilling equipment used during drilling operations is highly liable to all conditions which prevail in the well bore. The study of the impact of drilling fluid flow with various rheological properties on the strength and work of drill stem components will allow to search for the best solutions. The article describes the design and construction of two boreholes, fill up with 9 5/8" (244.5 mm) and 24" (609.6 mm) casings. The designed boreholes will be a joint part of the drilling laboratory in the S-1 building at AGH-UST in Krakow. Research The research described above can be done in openholes and implemented at the beginning of the design process for drilling works in new deposits. In addition, it will provide an opportunity for all engineers to get to know the behavior of components operating in an open hole.
Scale modelling should be a very useful strategy for the design of lunar structures. Preventing structural damages in the lunar environment is crucial and scale models are helpful to achieve this aim. The size of these models must be scaled to take into account the different gravitational levels. Since the lunar gravity acceleration is about one-sixth of the terrestrial one, it follows that the models on Earth will be very smaller than the prototype to be realized on the Moon. This strategy will represent an opportunity for engineers working on lunar structure design, provided that the errors, both computational and experimental, related to the change of scale are quantified, allowing reliable extension of the physical scale modeling results to the prototype. In this work, a three-dimensional finite element analysis of walls retaining lunar regolith backfill is described and discussed, in order to provide preliminary results, which can guide a future experimental investigation based on physical scale-modelling. In particular, computational errors related to the scale effects are assessed, with respect to a virtual prototype of the lunar geotechnical structure, and compared with errors from other sources of discrepancy, like the adopted constitutive model, the variability of the geotechnical parameters and the calculation section used in the 3D analysis. The results seem to suggest the soundness of this strategy of modelling and are likely to encourage new research, both numerical and experimental, supporting the structure serviceability assessment.
The results investigations of a soil having similar properties as lunar regolith performed at the Department of Drilling and Geoengineering, Faculty of Drilling, Oil and Gas, AGH University of Science and Technology in Kraków are presented in this paper. The research was carried out jointly with the Space Research Centre, Polish Academy of Sciences in Warsaw. The objective of the cooperation was to minimize the cost of tests of penetrator KRET, which will be used on the surface of the Moon. The American lunar regolith (e.g. CHENOBI) was used as reference soil. The most important properties were presented graphically in the form of figures and tables: grain size distribution, selected physical properties (bulk density, colour), selected mechanical parameters (shear strength, inner friction strength, cohesion). As a result the first Polish lunar soil analog AGK-2010 was produced.
PL
Pierwszy polski analog gruntu księżycowego, któremu nadano symbol AGK-2010, opracowano w Katedrze Wiertnictwa i Geoinżynierii na Wydziale Wiertnictwa, Nafty i Gazu Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie. Grunt ten został wytworzony w ramach współpracy z Centrum Badań Kosmicznych Polskiej Akademii Nauk w Warszawie. Celem badań było zminimalizowanie kosztów prowadzonych przez CBK PAN testów penetratora KRET (Seweryn i in., 2011), przygotowywanego do badań powierzchni Księżyca, poprzez zastąpienie, produkowanego w Stanach Zjednoczonych, analogu regolitu księżycowego, gruntem produkcji krajowej. Próbę wzorcową stanowiły grunty o nazwie CHENOBI i JSC, produkowane w USA jako analogi regolitu księżycowego pobranego z powierzchni Księżyca przez misję Apollo 17 (Rybus, 2009), (Sibille i in., 2006). Podstawowymi właściwościami, których wartości porównywano opracowując polski odpowiednik analogu regolitu księżycowego CHENOBI były: skład granulometryczny, właściwości fizyczne (gęstość nasypowa, barwa), właściwości mechaniczne (wytrzymałość na ścinanie, kąt tarcia wewnętrznego, kohezja), (PN-EN ISO 14688-1, 2006). Istotną dla procesu badawczego wskazówkę stanowiła informacja, o ostrokrawędzistości ziarn minerałów regolitu księżycowego (Rybus T., 2009), (Sibille i in., 2006). W artykule, w formie graficznej oraz zestawień tabelarycznych, zestawiono wartości najistotniejszych, dla porównań dwóch gruntów, wielkości takich jak: skład granulometryczny (rys. 1), charakterystyki krzywych uziarnienia (tab. 1), wybrane właściwości fizyczne, np. gęstość nasypowa, barwa (pkt. 2), parametry mechaniczne, takie jak wytrzymałość na ścinanie, kąt tarcia wewnętrznego i kohezja (rys. 2 i 3, tab. 2). Istotnym osiągnięciem prowadzonych badań było uzyskanie polskiego zamiennika gruntu księżycowego, którego jednostkowy koszt wytworzenia jest wielokrotnie mniejszy od jednostkowego kosztu zakupu gruntu wzorcowego. Opracowany, polski analog gruntu księżycowego AGK-2010 (zgłoszony do Urzędu Patentowego w 2011 r.) został z powodzeniem wdrożony w testach penetratora KRET w Centrum Badań Kosmicznych Polskiej Akademii Nauk w Warszawie.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.