Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  luminescent materials
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The spectroscopic analysis of materials for luminescent solar concentrators (LSC) is presented. The samples of polymethyl mathacrylate (PMMA) polymer matrix containing nanocrystals Nd,Yb:Y3Al5O12 (Nd,Yb:YAG), Nd,Yb:Gd3Ga5O12 (Nd,Yb:GGG) and Nd,Yb:Y2O3 (Nd,Yb:YO) were prepared. The nanocrystals were obtained via the (Pechini) modified sol-gel method. Spectroscopic investigations were performed for the nanocrystals before and after incorporating them in LSC plates. In the experiment, two diode lasers (DL) were used as excitation sources: DL operating at 808 nm to excite Nd3+ ions and DL operating at 976 nm for direct excitation of Yb3+ ions. Strong fluorescence signal from Yb3+ ions by 808 nm excitation proved an efficient energy transfer from Nd3+ to Yb3+ ions. The spectroscopic results indicate the successful incorporation of nanosized crystals into PMMA matrix. The best effects were obtained for Nd,Yb:YAG and Nd,Yb:GGG nanocrystals. Presented results show that polymer materials with nanocrystals doped by rare earth ions are promising solution for photovoltaic applications offering stability and emission in the spectral range matched to the maximum sensitivity of a silicon solar cell.
2
Content available remote On the luminescence of Lu3-xPrxAI5O12 ceramic bodies
EN
Luminescent materials are widely applied as corwerter screens in fluorescent lamps, LEDs, emissive displays, x-ray and high energy particle detectors, and solid state LASERs. In most of the application areas, the luminescent compositions are applied as polycrystalline powders, however, some devices require single crystalline materials, e.g. solid state LASERs or positron emission tomographs. Since single crystal growth is difficult and rather time consuming, applied crystals are very expensive. Moreover, some application areas require very homogenous and anisotropic optical and thermal properties, which sometimes cannot be sufficiently fulfilled by single crystals due to the inhomogeneous distribution of the cations and peculiarities of the phase diagram. Therefore, the replacement of single crystals by transparent ceramics is of growing interest. An important requirement for the realization of transparent ceramic bodies is the anisotropy of the index of refraction, which is given in cubic materials. Minerals of the general composition A3B2Si3O12 (A = Mg, Ca, Fe, Mn; B = Al, Fe, Cr) and ternary oxides according to the formula Ln3AI5O12 (Ln = Y, Gd, Lu) crystallize in the cubic garnet structure. The latter compounds are ideal host lattices for the luminescent ions Ce(3+), Pr(3+), Nd(3+), and Tb(3+). Thus the respective luminescent materials have found numerous applications as LED and display phosphors, as gain media in LASERs, and as scintillators in x-ray machines for medical imaging. This work deals with the preparation and spectroscopic characterization of Lu3AI5O12:Pr ceramic bodies, whereby their optical properties were compared to polycrystalline powders and single crystals. An important finding, in view of their application, is that the decay time of the [Xe]5d14f1 - [Xe]4f2 and [Xe]4f2- [Xe]4f2 transitions of the Pr(3+) ion in the ceramics is significantly different from the Pr(3+) ion in Lu3AI5O12:Pr powders. With respect to the relation between the internal quantum efficiency of Pr(3+) and the decay constant, possible explanations will be discussed.
PL
Materiały luminescencyjne - luminofory znajdują zastosowanie do konwersji promieniowania w lampach świetlówkach, diodach LED, w świecących ekranach, w czujnikach promieniowania wysokoenergetycznego, a także w stałych laserach. W większości zastosowań luminofory używa się w postaci proszków, chociaż w niektórych przypadkach potrzebne są monokryształy, jak to ma miejsce w technice laserowej, czy w tomografach. Hodowla monokryształów luminoforów jest wyjątkowo trudna i kosztowna. Zwłaszcza że w niektórych przypadkach wymagana jest wysoka jednorodność i anisotropia optyczna, jak również termiczna dla materiału luminescencyjnego. Jest to głównie gwarantowane przez monokryształy, przy czym także w tym przypadku mają miejsce niejednorodności w rozprowadzeniu kationów domieszki, a także występują braki w znajomości układów równowag. Z tego punktu widzenia występuje duże zainteresowanie, żeby zastąpić monokryształy polikrystaliczną ceramiką przeźroczystą. Wymaga się przy tym, żeby uzyskiwać materiał jednorodny optycznie, korzystnie o strukturze krystalograficznej regularnej. Minerały o ogólnym składzie chemicznym A3B2Si3O12 (A=Mg, Ca, Fe, Mn, i B=AI, Fe, Cr) a także sztuczne związki typu Ln3AI5O12 (Ln=Y, Gd, Lu) krystalizują w układzie regularnym i należą do rodziny granatów. Te ostatnie związki uważa się za idealną sieć macierzystą dla aktywatorów typu: Ce(3+), Pr(3+) Nd(3+) i Tb(3+). Tym sposobem powstały wysoko cenione luminofory znajdujące szerokie zastosowania w diodach LED, w ekranach świecących, jako aktywne media laserowe, a także w scyntylatorach promieniowania X w tomografach. Powyższa praca przedstawia wyniki syntezy i charakterystyki widmowe uzyskane dla ceramiki Lu3AI5O12:Pr. Dokonano porównania własności materiału proszkowego i ceramiki, a także danych literaturowych dotyczących monokryształu. Jako ważne z punktu widzenia zastosowań pokazano że czasy gaśnięcia dla przejść 5d1,4f2-4f2 ind 4f2-4f2 dla jonu Pr(3+) w ceramice są różne niż dla proszku.
3
Content available remote Functions of Eu3+ ions in materials with CdS nanoparticles and oxide matrices
EN
CdS semiconductor nanoparticles are used to improve the luminescence properties of europium(III) -doped matrices such as silica xerogel and silica nanoparticles, both prepared by a sol-gel method as well as zeolite NaY. The impregnation of CdS nanosized clusters on an Eu3+-doped matrix enhances the luminescence of both dopants. Additionally, the luminescence of the materials can be improved by thermal treatment and by changing the Eu3+/CdS molar ratio. Eu3+ emission spectra show changes in the intensities of the bands at 595 and 612 nm, depending on the structural order of the oxide matrices.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.