Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ludzka skóra
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Fractal model of transdermal drug delivery
EN
Skin, separating the vital organs of a human body, is a desirable route for drug delivery. However, the intact skin is normally permeable only for drug molecules with a low molecular weight. The stratum corneum (SC), being the outermost layer of the skin and the epidermis being the second – more permeable – layer of the skin, play an essential function in transdermal drug delivery. Physical and chemical methods of skin poration are used to enhance transdermal drug delivery. Each poration leads to an irregular system of pores which are connected with a system of micro-capillaries passing through the epidermis. Both the systems by their irregularity form a fractal porous matrix. Drugs administrated by this matrix can be either suspensions and solutions or creams and gels, therefore they have to be modelled as non-Newtonian fluids. To analyse the fluid flow through the porous matrix the model of the epidermis is assumed as gobbet-andmortar with the tortuous mortar of variable thickness and after transition from the mortar to the tube one considered classical and fractal capillary flows of selected non-Newtonian fluids. Fractal expressions for the flow rate, velocity and permeability of fluids flow in a porous matrix are derived based on the fractal properties of the epidermis and capillary model. Each parameter in the proposed expressions does not contain any empirical constant and has a clear physical meaning and the proposed fractal models relate the flow properties of considered fluids with the structural parameters of the epidermis as a porous medium. The presented analytical expressions will help understand some of the physical principles of transdermal drug delivery.
2
Content available Drug diffusion transport through human skin
EN
The stratum corneum (SC) forms the outermost layer of the human skin and is essentially a multilamellar lipid milieu punctuated by protein-filled corneocytes that augment membrane integrity and significantly increase membrane tortuosity. The lipophilic character of the SC, coupled with its intrinsic tortuosity, ensure that it almost always provides the principal barrier to the entry of drug molecules into the organism. Drugs can be administered either as suspensions or as solutions and the formulation can range in complexity from a gel or and ointment to a multilayer transdermal path. In this paper, we discuss theoretical principles used to describe transdermal release and we show that relatively simple membrane transport models based on the appropriate solution to the Fick’s second law of diffusion can be used to explain drug release kinetics into such a complex biological membrane as the human skin. To apply the Fick’s law we introduced into our considerations a brick-and-mortar model with two factors of tortuosity. Assuming that the mortar thickness is variable we also introduced the hindrance factor allowing us to model this variability. Having the modified Fick’s equation we presented its general solution and two special cases of this solution frequently applicable in permeation experiments. It seems that the solutions presented herein better approximate the real conditions of drug delivery then these well known.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.