Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  low Reynolds number
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This article presents a two-dimensional steady viscous flow simulation past circular and square cylinders at low Reynolds numbers (based on the diameter) by the finite volume method with a non-orthogonal body-fitted grid. Diffusive fluxes are discretized using central differencing scheme, and for convective fluxes upwind and central differencing schemes are blended using a ‘deferred correction’ approach. A simplified pressure correction equation is derived, and proper under-relaxation factors are used so that computational cost is reduced without adversely affecting the convergence rate. The governing equations are expressed in Cartesian velocity components and solution is carried out using the SIMPLE algorithm for collocated arrangement of variables. The mesh yielding grid-independent solution is then utilized to study, for the very first time, the effect of the Reynolds number on the separation bubble length, separation angle, and drag coefficients for both circular and square cylinders. Finally, functional relationships between the computed quantities and Reynolds number (Re) are proposed up to Re = 40. It is found that circular cylinder separation commences between Re= 6.5-6.6, and the bubble length, separation angle, total drag vary as Re, Re-0.5, Re-0.5 respectively. Extrapolated results obtained from the empirical relations for the circular cylinder show an excellent agreement with established data from the literature. For a square cylinder, the bubble length and total drag are found to vary as Re and Re-0.666, and are greater than these for a circular cylinder at a given Reynolds number. The numerical results substantiate that a square shaped cylinder is more bluff than a circular one.
EN
The well-known dominant sources of airframe noise are associated with unsteadiness of separated and/or vortical flow regions around the high-lift system (flaps, slats) and the aircraft undercarriage (landing gear). Current practical landing gear noise prediction models are individual component - based, which means that the various components are divided into groups according to the frequency range, in which they predominantly radiate noise. Since the far-field noise spectra are approximately Strouhal - based, the emitted frequency is assumed to be directly related to their size: the large elements are responsible for the low frequency region of the spectra, and the small components for the high frequency region. On the basis of such understanding of the noise generation mechanism, the special configurations that lead to considerable noise suppression were proposed. One element of these configurations are rods with different shape and cross section. In this work the situation when circular rods are in area of laminar-turbulent flow were analysed. The measurements were carried out for single circular rod with different diameters to study the noise effect depended on Reynolds number. Far field noise for broad range of Reynolds numbers was also examined depending on distance from the source of noise.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.