Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  lotniczy skaning laserowy (ALS)
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The main goal of the paper is to make a general assessment of the application of 3D technologies in spatial planning. It was performed with the city of Krakow as the case study. The paper describes the outline of the spatial planning system in Poland and the planning conditions of Krakow. The data obtained from laser scanning for Krakow are also briefly characterized. The possibility of using these data for locating high-rise buildings in terms of the protection of Krakow’s panorama and within two programs “IT system of the Country’s Protection Against Extreme Hazards” (ISOK) and “Integrated spatial data monitoring system for air quality improvement in Krakow” (MONIT-AIR) were analyzed in the paper. The main result of the research is the assessment of what studies or measurements may be used to meet particular spatial planning needs or requirements.
PL
Głównym celem artykułu jest ogólna ocena zastosowania technologii 3D w planowaniu przestrzennym. Została ona przeprowadzona na przykładzie miasta Krakowa. W artykule opisano zarys systemu planowania przestrzennego w Polsce oraz uwarunkowania planistyczne Krakowa. Krótko scharakteryzowano również dane uzyskane ze skaningu laserowego dla Krakowa. W pracy przeanalizowano możliwość wykorzystania tych danych do lokalizacji budynków wysokich w zakresie ochrony panoramy Krakowa oraz w ramach dwóch programów – „Informatyczny System Osłony Kraju przed nadzwyczajnymi zagrożeniami” (ISOK) i „Zintegrowany system monitorowania danych przestrzennych dla poprawy jakości powietrza w Krakowie” (MONIT-AIR). W wyniku przeprowadzonych analiz określono, jakie badania lub pomiary mogą być wykorzystane do zaspokojenia konkretnych potrzeb lub wymagań planowania przestrzennego.
PL
W artykule przedstawiono wyniki porównania wartości obniżeń punktów obserwacyjnych w latach 2010-2012 i 2010-2014, określonych przy wykorzystaniu dwóch metod pomiarowych, tj. pomiaru niwelacyjnego, jako wzorcowego z uwagi na większą dokładność wyznaczania wysokości rozpatrywanych punktów oraz pomiaru ALS. Naloty prowadzono w latach 2010-2014 nad obszarem w granicach administracyjnych miasta Bytom. Do analizy zmian wysokości powierzchni wykorzystano numeryczne modele rzeźby terenu z lat 2010, 2012 i 2014 oraz mapy z okresowymi obniżeniami. Na podstawie wyników uzyskanych niezależnymi metodami pomiarowymi została przeprowadzona ocena możliwości wykorzystania lotniczego skaningu laserowego w obszarze poruszanego zagadnienia.
EN
This paper presents the results of comparison of subsidence of observation points during 2010-2012 and 2010-2014 determined by two different measurement methods, such as leveling survey and aerial laser scanning. The first method was assumed as reference because of higher accuracy of determination of the point’s height. Flights were carried out between 2010 and 2014 over the land inside the administrative boundaries of Bytom. Maps of periodic subsidence and digital terrain models from 2010, 2012 and 2014 were used for analysis of ground elevation changes. On the basis of the results obtained by independent measuring methods, evaluation was made to determine the possibility of use of aerial laser scanning in within the discussed content.
3
Content available Krakowskie Kopce w ArcGIS online
PL
Technologie geoinformacyjne dają szerokie możliwości pozyskiwania, przetwarzania i udostępniania danych przestrzennych m.in. do tworzenia aplikacji oraz serwisów internetowych, które pozwalają na wyświetlanie oraz przetwarzanie w nowoczesny i łatwy sposób treści kartograficznych na laptopie, tablecie czy smartfonie. Celem niniejszego opracowania było przygotowanie interaktywnej aplikacji ArcGIS Online dla Kopców Krakowa, jako ważnych elementów krajobrazu. W opracowaniu zinwentaryzowano obiekty małej architektury oraz zieleń, występującą w bezpośrednim otoczeniu Kopców. W tym celu wykonano pomiary GPS i geotagowane zdjęcia. Określenia gatunków dokonano w oparciu o fachową literaturę dendrologiczną. Inwentaryzację uzupełniono wybranymi widokami przestrzennymi i przekrojami utworzonymi z chmur punktów lotniczego skanowania laserowego (źródło: projekt ISOK, GUGiK). W efekcie finalnym udostępniona została interaktywna prezentacja „Krakowskie Kopce” w formie Story Map ArcGIS Online.
EN
Geoinformation technologies provide possibilities for processing geospatial data and generating applications and web services that allow to display and process cartographic information on laptop, tablet or smartphone in a modern and easy way. The aim of this paper was to prepare an interactive ArcGIS Online application for Mounds of Krakow as an important elements of Krakow landscape. The objects of small architecture and greenery, in the vicinity of the Mounds, were inventoried. For this purpose, GPS measurements and geotagged images were performed. Species classification was based on the professional dendrological literature. The Application was supplemented by selected views and profiles generated from airborne laser scanning point clouds (source: ISOK project, GUGiK). As a result, the interactive application of "Mounds of Krakow" in the form of Story Map ArcGIS Online was made available.
EN
The final result of the architect´s designing work is the visualization of the project in the form of a drawing or a picture on the screen. Such screen images have many advantages, there are, however, some flaws of this method (of visualization), which makes it necessary to build physical models of the projected objects. The observation of physical models requires no hardware, the observed model is seen using the principles of everyday experience of the observer - as a realistic three-dimensional object and - it can be observed in real time from any site. Moreover, one can directly determine the spatial relationship between its component parts. Physical models can be elaborated manually or using modern printing technology - 3D. Three-dimensional printing technology involves building a model of layers. Subsequent layers are superimposed on each other, but their shape is given in numerical form - according to the programmed design model. The layers are bound together creating a stable physical spatial model. The aim of this study was to use the 3D printing technology to visualize terrain objects. As the source object for testing the 3D printing technology four Krakow mounds have been used. These objects were a well selected experimental basis, both because of the shape of the surface topography, and the associated engineering structures (paths and walls). The source data was obtained from the GNSS measurements and from airborne and terrestrial laser scanning. For the models prepared on the basis of GNSS measurements some inaccuracies of mapping were observed, due to the insufficient number of the source points. The models based on the clouds of points from laser scanning showed high accuracy in reproducing all terrain and engineering details. In conclusion we list the temporary 3D printing flaws like: the time-consuming printing process and the high technology cost. Advantages and possible applications lie in the creation of architectural models and in the renovation of monuments.
PL
Efektem końcowym działalności projektowej architekta jest wizualizacja w formie rysunku lub obrazu na ekranie monitora. Takie obrazy mają bardzo wiele zalet, są jednak pewne niedoskonałości tej metody prezentacji wyników, które sprawiają, że okazuje się konieczne budowanie materialnych modeli projektowanych obiektów. Obserwacja modeli materialnych nie wymaga żadnego sprzętu, model jest postrzegany z wykorzystaniem zasad codziennego doświadczenia obserwatora, jako realistyczny obiekt trójwymiarowy, można go obserwować w czasie rzeczywistym z dowolnych stron, na modelu można bezpośrednio ustalać relacje przestrzenne pomiędzy jego częściami składowymi. Modele materialne mogą być wykonywane ręcznie albo za pomocą nowoczesnej techniki wydruku 3D. Technologia wydruku trójwymiarowego polega na budowaniu modelu z warstw. Kolejne warstwy są nakładane na siebie, przy czym ich kształt jest zadany w postaci numerycznej - zgodnie z zaprogramowanym projektem modelu. Warstwy są wiązane ze sobą, w rezultacie czego powstaje trwały materialny model przestrzenny. W niniejszej pracy został podjęty temat zastosowania technologii druku 3D do wizualizacji obiektów terenowych. Do testowania technologii druku 3D jako obiekty źródłowe wybrano cztery krakowskie kopce. Te obiekty stanowiły dobrze dobraną bazę doświadczalną, zarówno ze względu na kształt powierzchni topograficznej, jak również na występujące obiekty inżynierskie (ścieżki i mury). W badaniach wykorzystano dane pochodzące z pomiarów GNSS oraz z lotniczego i naziemnego skanowania laserowego. W przypadku modeli opracowanych na podstawie pomiarów GNSS zaobserwowano pewne niedokładności odwzorowania obiektów, wynikające z niewystarczającej liczby punktów pomiarowych. Modele opracowane na podstawie chmur punktów skanowania laserowego wykazywały wysoką dokładność odwzorowania wszelkich szczegółów terenowych i inżynierskich.W podsumowaniu omówiono przejściowe wady druku 3D, którymi są czasochłonność procesu druku i wysokie koszty technologii oraz szereg zalet i możliwości zastosowań w tworzeniu makiet architektonicznych i w renowacji zabytków.
EN
The paper presents the geological interpretation of Airborne Laser Scanning data of Kasprowy Wierch Mt. area. The analyzed points cloud data represent the ground surface after removal of the land cover (primarily vegetation) objects. The ALS data were characterized by very high density, presenting even minor terrain forms, very difficult to identify in forested and mountain dwarfpine areas as well. The resulting image of detailed geomorphology of the study area was compared with existing maps at scale of 1 : 10 000 and literature data. This allowed verifying the extent of geological units of basement rocks and shed new light on existing opinions on the genesis of glacial sediments. An extensive landslide has been identified on the eastern slopes of Sucha Czuba Mt. The landslide has not been reported in the literature so far. Application of laser scanning data was extremely useful and allowed making new observations that enrich the existing knowledge about the geology of this part of the Tatra Mts.
EN
Canopy closure is a very important parameter of forest stand characteristic with ecological and economical signifi cance. During the forest stand inventory, the crown coverage is specifi ed as a descriptive value in quite a subjective way and the forest compartments are qualifi ed to fi xed classes based on the guidelines (IUL). The Airborne Laser Scanning (ALS) offers the possibility to generate Digital Surface Model (DSM; also called Crown Height Model) and based on this the stand characteristic can be determined. This paper presents a method of crown cover (canopy) estimation based on ALS data. Estimation was carried out separately for the whole area of compartments and focusing on the inventory plots. Study area was located in Chojna Forest District (RDLP Szczecin). Study was done based on 49 coniferous compartments (inc. 95 sample plots) and 67 deciduous compartments (134 plots). ALS data were collected in September 2006 using Riegl LMS Q-560 (full waveform) device mounted on helicopter (fl ying altitude 500 m). Reference data (forest inventory based on sample plots) were collected during July/August 2006. Based on ALS, the DSM and nDSM (normalised) were generated as raster (1x1 m; GeoTIFF). Crown cover was obtained from nDSM by pixel classifi cation using height attributes (ERMapper). The profi le analysis of ALS point cloud of each forest compartment was conducted to eliminate points from second storey. For the compartment level the SILP data were used as reference. To compare the descriptive data with ALS estimations transformation from descriptive to number values was done. Verifi cation of ALS method was done through on-screen vectorization of crowns using aerial orthophoto (pixel size 12cm) in 5 forest compartments. Digital boundaries of the compartments coming form Forest Digital Map (LMN) were examined using nDSM and orthophoto RGB. Results show that crown cover estimated from ALS point cloud on the compartment level for coniferous forest fi ts in 53% to the reference data (SILP). Crown cover based on ALS was lower than SILP value only for 10% of compartments. In 37% compartments we observed higher overestimations using ALS. Different results occurred in deciduous compartments where ALS crown cover value was higher than SILP for 47%, lower in 13% and with no difference for 40% of compartments. In deciduous compartments reverse correlation between stand height and difference value between SILP and ALS crown coverage was found. Differences between ALS crown coverage for all compartments and sample plots were insignifi cant. Crown cover value for coniferous and deciduous sample plots was higher (3.7% and 2.9%) than coverage for corresponding forest compartment. This proves great usefulness of ALS data in sample plots arrangement planning in stands. Results obtained through screen vectorization on orthophoto were similar to ALS method. During data retrieving the signifi cant errors in Forest Digital Map (LMN) vectors occurred, which shows that verifi cation of forest compartments boundaries is needed every time when ALS data or aerial images are taken.
PL
Zwarcie koron drzew należy do niezmiernie ważnych cech taksacyjnych drzewostanu o znaczeniu ekologicznym i gospodarczym. W toku inwentaryzacji zasobów leśnych zwarcie określa się w terenie w sposób opisowy i dość subiektywny kwalifi kując je odpowiednio do klas ustalonych przez Instrukcję Urządzania Lasu. Lotniczy skaning laserowy (ang. ALS) stwarza możliwości generowania Numerycznego Modelu Powierzchni Terenu (NMPT; ang. DSM), a na jego podstawie określanie wybranych cech taksacyjnych drzewostanu. Praca prezentuje możliwości nowej metody określenia parametru zwarcia koron w drzewostanach na podstawie analizy NMPT. Ocenę przeprowadzono na dwóch poziomach szczegółowości, tj. zwarcia określanego dla całych pododdziałów oraz kołowej powierzchni badawczej. Teren badań zlokalizowano w Obrębie Piasek w Nadleśnictwie Chojna (RDLP Szczecin). Analizie poddano 49 pododdziałów iglastych, w których założono 95 powierzchni kołowych oraz 67 pododdziałów liściastych ze 134 powierzchniami kołowymi. Chmury punktów ALS zostały pozyskane we wrześniu 2006 roku skanerem typu full waveform (Riegl LMS Q-560) ze śmigłowca, z wysokości 500m. w sierpniu 2006 zakończono zbieranie danych referencyjnych dla 229 powierzchni kołowych. Na podstawie danych ALS wygenerowany został NMPT oraz nNMPT (1x1m; GeoTIFF), który posłużył do analizy parametru zwarcia (klasyfi kacja pikseli po atrybucie wysokości; ER Mapper). W celu wyeliminowania drugiego piętra i podszytu, na profi lach ALS odczytywano wysokość podstawy korony, która stanowiła graniczną wartość analiz zwarcia. Dla poziomu pododdziału jako dane referencyjne posłużyły informacje zapisane w tabelach SILP\LAS. Do porównania tych wartości zastosowano transformację wartości opisowych na wskaźniki liczbowe. Weryfi kacja metody ALS została przeprowadzona w oparciu o ekranową wektoryzację koron na ortofotografi i cyfrowej dla reprezentatywnych części 5-ciu pododdziałów. Analizie poddano również poprawność przebiegu granic pododdziałów Leśnej Mapy Numerycznej (LMN), w oparciu o zintegrowany produkt rastrowy: nNMPT + cyfrowa ortofotomozaika RGB (piksel 12 x 12cm). Stwierdzono, iż zwarcie określone na podstawie danych ALS dla poziomu pododdziałów w drzewostanach iglastych było w 53% przypadków zgodne z danymi referencyjnymi z urządzania lasu. W 37% przypadków otrzymano wyższe wartości zwarcia ALS a jedynie w 10% niższe od referencji. Odmiennie przedstawiała się sytuacja dla drzewostanów liściastych, dla których nie zanotowano różnic w 40% przypadków, wyższą wartość zwarcia ALS w 47% natomiast niższą w 13% pododdziałów. Tylko w przypadku drzewostanów liściastych stwierdzono zależność, iż ze wzrostem ich wysokości występują coraz większe rozbieżności pomiędzy porównywanymi metodami. Porównanie wartości zwarcia ALS pomiędzy pododdziałem a wartościami dla powierzchni kołowej wykazało bardzo niewielkie różnice. Zwarcie analizowane na powierzchniach kołowych było zawyżone średnio o 3,7% w przypadku gatunków iglastych i 2,9% d-stanów liściastych. Potwierdza to wysoką użyteczność danych ALS w planowaniu rozmieszczenia powierzchni kołowych w drzewostanach. Wartość zwarcia uzyskana metodą wektoryzacji koron na ortofotomozaice okazała się w większości przypadków bardzo zbliżona do określonego technologią ALS. W toku prac wykazano znaczne rozbieżności przebiegu wektora granic LMN, co wskazuje na konieczność jego każdorazowej weryfi kacji na podstawie NMPT lub nNMPT i ortofotografi i, o ile jest dostępna.
PL
Zieleń w aglomeracjach miejskich odgrywa bardzo ważną rolę spełniając wiele funkcji mikroklimatycznych (produkcja tlenu, ocienienie) estetycznych czy ochronnych (np. przed hałasem, emisjami gazowymi i pyłowymi). Struktura pionowa i pozioma roślinności krzewiastej i drzewiastej, definiowanej jako podstawowy element zieleni miejskiej, decyduje o jej funkcjach. Waloryzacja przestrzeni miejskiej pod kątem zieleni polega na pozyskiwaniu wybranych parametrów dla dużych obszarów miejskich przy użyciu technologii teledetekcyjnych, przykładem których jest lotniczy skaning laserowy (ALS). Praca stanowi próbę automatycznego określenia parametru zwarcia klasy „drzew wysokich” (powyżej 15 m wysokości) oraz zwarcia całej klasy „warstwa wegetacji” (powyżej 5 m wysokości), na podstawie analiz chmury punktów ALS oraz ortofotografii lotniczych. Obszar testowy (3.47 ha) obejmował fragment parku miejskiego „Planty” w Krakowie. Dane ALS pozyskano w 2004 roku z pułapu śmigłowca, używając skanera TopEye oraz kamery cyfrowej średniego formatu. Analizy zwarcia „drzew wysokich” prowadzono bezpośrednio na chmurze punktów ALS (w oprogramowaniu Terrasolid Ltd). W celu określenia zwarcia klasy „warstwa wegetacji” przeprowadzono wektoryzację ekranową lotniczej ortofotomapy oraz analizowano NMPT (ang. DSM) w oprogramowaniu TreesVis (LAU, Freiburg). Dokładność określania zwarcia „drzew wysokich” jak i warstwy wegetacji przy użyciu Terrasolid okazała się niezadowalająca. Bardzo wysoką dokładność zwarcia „warstwy wegetacji” uzyskano natomiast stosując wektoryzację ekranową ortofotomapy (błędy na poziomie 0-3% w stosunku do danych referencyjnych jakimi były pomiary terenowe). Zadowalające wyniki uzyskano metodami automatycznymi bazującymi na NMPT (ALS) w wariantach rozdzielczości: 1.0 m, 0.5 m lub 0.25 m (z filtrem Gaussa 3x3 piksele) oraz 1.0 m (z filtrem Gaussa 5x5 pikseli). Praca dowiodła wysokiej przydatności technologii ALS oraz cyfrowej fotogrametrii w aspekcie oceny zwarcia klasy „warstwa wegetacji” oraz procesu automatyzacji przy zachowaniu jego obiektywizmu.
EN
Urban green areas play a significant role in built-up areas as they have important microclimatic functions (oxygen production, shading), as well as aesthetic or protective functions (reducing noise pollution and also gas and dust imissions). The horizontal and vertical structure of trees and bushes, considered as the basic element of urban green, determines these functions. Getting the best from urban space, in relation to green areas, involves gathering particular parameters for large surfaces using remote sensing technologies, i.e. Airborne Laser Scanning (ALS). The article presents a trial of a method for automatic determination of crown closure for “high trees” (above 15 m high) and manual and automatic determination of closure of the whole vegetation layer (above 5 m height) using ALS point clouds and airborne orthophotographs. The test area (3.47 ha.) was situated in Krakow’s Planty Park. ALS data were collected in 2004 from a helicopter with a TopEye scanner and a medium format digital airborne camera. Analyses of crown closure for “high trees” were conducted directly on the ALS point cloud (Terrasolid Ltd.). In order to determine the vegetation layer’s closure, digitalization of the airborne orthophotomap and analyses of DSM using TreesVis Software (LAU, Freiburg) were carried out. The results of the estimation of the „high trees”’ crown closure were not satisfactory. In contrast, the accuracy of determining the closure of the vegetation layer proved to be very high. The range of differences between the results from the digitalization method compared to the reference data, was 0-3%. Satisfactory results, which means results differing in the 1-10% range, were also reached by automatic methods based on DSM of diverse resolutions: 1.0 m, 0.5 m or 0.25 m (with Gauss filter of 3x3 pixel) and 1.0 m (with Gauss filter of 5x5 pixel). The work proved the great utility of ALS technology combined with digital photogrammetry for determining the closure of the vegetation layer in an automatic and objective way.
PL
Około 1.5 mln producentów rolnych w Polsce składa co roku wnioski o dopłaty bezpośrednie z funduszy UE. Mechanizmy zarządzania i kontroli dopłat bezpośrednich opierają się w dużej mierze na wykorzystaniu technologii geoinformatycznych będących częścią systemu IACS. Kontrola wniosków, tzw. kontrola „na miejscu” realizowana jest dwoma metodami, tj.: inspekcji terenowej lub „Foto”. Obie bazują na danych z LPIS (System Identyfikacji Działek Rolnych). W 2008 roku ok. 107 tys. gospodarstw skontrolowano metodą „Foto” w oparciu o ortoobrazy satelitarne lub lotnicze. Najwięcej nieprawidłowości (ok. 19%) wykazano dla województwa dolnośląskiego. Badania opisane w niniejszym artykule dotyczą obszaru testowego w powiecie Milicz (obręb ewidencyjny Pracze; woj. dolnośląskie). W roku 2007 przeprowadzono dla tego obszaru lotniczy skaning laserowy (ALS) oraz wygenerowano ortofotografię w oparciu o zdjęcia cyfrowe VEXCEL. Pole testowe objęło 68 działek ewidencyjnych (EGiB) o łącznej powierzchni 68.57 ha, składającej się łącznie z 13 klas użytków gruntowych. Według danych EGiB z 2009 roku, użytek Ls zajmował 5.77 ha (14.10%) obszaru testowego. W oparciu o ortofotografię lotniczą (kompozycja RGB; piksel 15 cm) oraz wektor działek EGiB, operator wektoryzował obszary podlegające sukcesji leśnej, które nie podlegają dopłatom bezpośrednim. Wyniki prac wskazują, iż użytek Ls zajmuje w rzeczywistości obszar 19.04 ha, czyli ponad 3 razy więcej niż wykazał EGiB. Równolegle wykonano analizy przestrzenne GIS bazujące na znormalizowanym Numerycznym Modelu Powierzchni Terenu (zNMPT) wygenerowanym w oparciu o chmurę punktów lotniczego skaningu laserowego. Testowano 3 warianty zNMPT, tj. powyżej progu: 1 m, 2 m oraz 3 m nad gruntem, reprezentującego wysokości roślinności. Automatyczne przetwarzanie było możliwe dzięki przygotowaniu odpowiedniego modelu w aplikacji ArcGIS (ESRI). Wyniki wskazują, iż obszary pokryte roślinnością o wysokości powyżej 1 m zajmują 19.84 ha (48.5%). Niewielka różnica powierzchni lasu (0.8 ha) dla modelu zNMPT >1 m, w stosunku do metody „Foto”, wynika z problemów generowania ortoobrazów w oparciu o NMT. Automatyczna kontrola bazująca na klasyfikacji obrazów lotniczych czy satelitarnych wsparta informacją o wysokości obiektów (zNMPT), wydaje się być wręcz koniecznością w kontekście cyklicznego procesu monitoringu i kontroli obszarów rolniczych w Polsce.
EN
Every year about 1.5 mln Polish farmers submit applications for direct subsidies from EU money. The mechanism of management and control of these subsidies is very often based on geoinformation technologies being a part of an IACS system. The verification of the applications submitted is done by field measurements (RFV) or by using the so called „Photo” method. Both of these are based on the LPIS (Land Parcel Identification System) data. During 2008 about 107,000 farms in Poland were checked using the „Photo” method, based on satellite or aerial images. The number of anomalies was highest in the Dolnośląskie voivodeship (19%). The paper presents results from a test site located in Milicz. In 2007 airborne laser scanning was performed and orthophotos were created based on aerial images (VEXCEL camera). The test site consisted of 68 parcels (68.57 ha), divided in 13 classes of land-use type. According to the cadastral system (EGiB), the class forest occupies 5.77 ha (14.1%) of test area. Using orthophoto and vector layer of parcels, the operator vectorized areas with forest succession which are not eligible for subsidies. The results show that the forest class occupies an area over 3 times larger (19.04 ha) than in the EGiB data base. The GIS analyses were also performed based on nDSM generated from the ALS point cloud. Three approaches were used with different heights of vegetation (1, 2 and 3 m). The analysis was done automatically using ArcGIS (ESRI). The results indicate that there is only a small difference between the “Photo” method and the automatic method based on ALS (19.84 ha). Automatic verification based on classification of aerial or satellite images, supported by information about the height of objects, is recommended for periodic monitoring and control of agricultural areas in Poland.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.