Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  loss minimization
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Fuzzy-based PSO algorithm for transmission line Losses minimization with UPFC
EN
In this paper, one of the essential types of flexible alternating current transmission systems (FACTS), the Unified Power Flow Controller(UPFC), was used to reduce the losses in transmission lines. A particle swarm optimization (PSO)-based modified fuzzy logic (FL)controller with UPFC was proposed to obtain the optimal location of UPFC and optimum parameters of the normalized fuzzy controller to achieve the objective function of the research and compare the results with the PI-controller. The Newton-Raphson method was employed to perform load flow analysis by MATLAB code/M-file. The proposed method was tested in the IEEE-14bus system, and the results showed that the PSO-FL minimized losses better than PSO-PI.
PL
W artykule wykorzystano jeden z podstawowych typów elastycznych systemów przesyłowych prądu przemiennego (FACTS), czyli Unified Power Flow Controller (UPFC), w celu zmniejszenia strat w liniach przesyłowych. W celu uzyskania optymalnej lokalizacji UPFC i optymalnych parametrów znormalizowanego kontrolera rozmytego w celu osiągnięcia celu badań i porównania wyników z PI zaproponowano zmodyfikowany sterownik z logiką rozmytą (FL) oparty na optymalizacji roju cząstek (PSO) z UPFC. -kontroler. Do wykonania analizy przepływu obciążenia za pomocą kodu MATLAB/pliku M zastosowano metodę Newtona-Raphsona. Zaproponowana metoda została przetestowana w systemie IEEE-14bus, a wyniki wykazały, że PSO-FL minimalizuje straty lepiej niż PSO-PI.
EN
Induction motors (IMs) experience power losses when a portion of the input power is converted to heat instead of driving the load. The combined effect of copper losses, core losses, and mechanical losses results in IM power losses. Unfortunately, the core losses in the motor, which have a considerable impact on its energy efficiency, are not taken into account by the generally employed dynamic model in the majority of the studies. Due to this, the motor rating often corresponds to the worst-case load in applications, but the motor frequently operates below rated conditions. A hybridized model reference adaptive system (MRAS) with sliding mode control (SMC) is used in this study for sensorless speed control of an induction motor with core loss, allowing the motor to operate under a variety of load conditions. As a result, the machine can run at maximum efficiency while carrying its rated load. By adjusting the 𝛼-axis current in the 𝛼 𝛽 reference frame in vector-controlled drives, the system’s performance is enhanced by running the motor at its optimum flux. Regarding the torque and speed of both induction motors with and without core loss, the Adaptive Observer Sliding Mode Control (AOSMC) has been constructed and simulated in this case. The AOSMC with core loss produced good performance when the proposed controller was tested.
3
EN
A recent evolutionary optimization algorithm, Barnacles Mating Optimizer (BMO) algorithm is proposed to solve one of the optimal reactive power dispatch (ORPD) problems viz. loss minimization in power system. The concept of Hardy-Weinberg principle and sperm-cast process of barnacles is adopted in BMO to balance the exploitation and exploration in solving the optimization problem. Optimal reactive power dispatch (ORPD) on the other hand is one of the complex optimization problems in power system operation. BMO is utilized to obtain the optimal combination of control variables such as generator voltages, transformer tap setting and injected MVAR or known as reactive compensation devices to achieve the minimum losses in the power system. To show the effectiveness of proposed BMO, it is tested on IEEE-30 bus system which consists of 25 control variables and also has been tested on the large system of power network viz. IEEE-118 bus system. The obtained results from BMO are compared with other well-known optimization algorithms in the literature. The obtained comparison results indicate that proposed BMO is effective to reach minimum loss for ORPD problem.
PL
Zaproponowano najnowszy ewolucyjny algorytm optymalizacji, algorytm Barnacles Mating Optimizer (BMO), aby rozwiązać jeden z problemów z optymalnym rozprowadzaniem mocy biernej (ORPD), a mianowicie. minimalizacja strat w systemie elektroenergetycznym. Koncepcja zasady Hardy'ego-Weinberga i procesu odlewania nasienia pąkli została przyjęta w BMO w celu zrównoważenia eksploatacji i eksploracji w rozwiązaniu problemu optymalizacji. Natomiast optymalne dysponowanie mocą bierną (ORPD) jest jednym ze złożonych problemów optymalizacji pracy systemu elektroenergetycznego. BMO służy do uzyskania optymalnej kombinacji zmiennych sterujących, takich jak napięcia generatora, ustawienie zaczepów transformatora i wstrzykiwany MVAR lub znane jako urządzenia kompensacji reaktywnej, w celu osiągnięcia minimalnych strat w systemie elektroenergetycznym. Aby pokazać skuteczność proponowanego BMO, został przetestowany na systemie magistrali IEEE-30, który składa się z 25 zmiennych sterujących, a także został przetestowany na dużym systemie sieci energetycznej, a mianowicie. System magistrali IEEE118. Otrzymane wyniki z BMO są porównywane z innymi znanymi algorytmami optymalizacyjnymi w literaturze. Uzyskane wyniki porównawcze wskazują, że proponowane BMO jest skuteczne w osiąganiu minimalnych strat związanych z problemem ORPD.
4
Content available remote Loss calculation method for hybrid excited machines
EN
This paper presents an experimental method for determining the main losses components in permanent magnets synchronous machines with hybrid excitation (HPMSM). To model the sources of losses is very important in order to optimize such machines and to develop robust control strategies (minimum losses optimization) which can be used in practical applications. Proposed approach was validated using time domain simulations and experiments. Experimental results clearly exhibit the benefits of including core loss model in control system of HPMSM.
PL
W artykule przedstawiono eksperymentalną metodę wyznaczania głównych składników strat maszyn synchronicznych z magnesami trwałymi i wzbudzeniu hybrydowym (HPMSM). Zamodelowanie źródeł strat jest istotne dla optymalizacji tych maszyn oraz dla opracowania właściwych strategii ich sterowania (przy minimalizacja strat), które mogłyby być zastosowane w praktyce. Zaproponowany algorytm został sprawdzony teoretycznie i doświadczalnie. Wyniki badań eksperymentalnych pokazały zalety uwzględnienia strat mocy w algorytmie sterowania HPMSM.
EN
The radial distribution system is a rugged system, it is also the most commonly used system, which suffers by loss and low voltage at the end bus. This loss can be reduced by the use of a capacitor in the system, which injects reactive current and also improves the voltage magnitude in the buses. The real power loss in the distribution line is the I2R loss which depends on the current and resistance. The connection of the capacitor in the bus reduces the reactive current and losses. The loss reduction is equal to the increase in generation, necessary for the electric power provided by firms. For consumers, the quality of power supply depends on the voltage magnitude level, which is also considered and hence the objective of the problem becomes the multi objective of loss minimization and the minimization of voltage deviation. In this paper, the optimal location and size of the capacitor is found using a new computational intelligent algorithm called Flower Pollination Algorithm (FPA). To calculate the power flow and losses in the system, novel data structure load flow is introduced. In this, each bus is considered as a node with bus associated data. Links between the nodes are distribution lines and their own resistance and reactance. To validate the developed FPA solutions standard test cases, IEEE 33 and IEEE 69 radial distribution systems are considered.
EN
Static Var Compensator (SVC) is a popular FACTS device for providing reactive power support in power systems and its placement representing the location and size has significant influence on network loss, while keeping the voltage magnitudes within the acceptable range. This paper presents a Firefly algorithm based optimization strategy for placement of SVC in power systems with a view of minimizing the transmission loss besides keeping the voltage magnitude within the acceptable range. The method uses a self-adaptive scheme for tuning the parameters in the Firefly algorithm. The strategy is tested on three IEEE test systems and their results are presented to demonstrate its effectiveness.
EN
Conventional field-orientated Induction motor drives operate at rated flux even at low load. To improve the efficiency of the existing motor it is important to regulate the flux of the motor in the desired operating range. In this paper a loss model controller (LMC) based on the real coded genetic algorithm is proposed, it has the straightforward goal of maximizing the efficiency for each given load torque. In order to give more accuracy to the motor model and the LMC a series model of the motor which consider the iron losses as a resistance connected in series with the mutual inductance is considered. Digital computer simulation demonstrates the effectiveness of the proposed algorithm and also simulation results have confirmed that this algorithm yields the optimal efficiency.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.