Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  longitudinal stress variation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In cold-formed thin-walled cross-sections, complex phenomena, related to local and distortional buckling of slender walls containing edge fold stiffeners, occur. In order to determine the design resistance of such a cross-section in the post-buckling range, it is necessary to determine the critical stress of local buckling for individual walls. On this basis, the corresponding effective widths are determined. Subsequently, the distortional buckling effect is taken into account, typically by reducing the thickness of the substitute cross-section of the stiffener. The paper presents approximation formulas of plate buckling coefficients (k*) that are used to calculate critical local buckling stress for technically crucial stress distributions. The full range of variation of the index of elastic fixity of the longitudinal edge of the thin-walled cross-section was considered. The coefficients were determined for a more accurate, relative to Eurocode 3, computational model. Both the effect of reciprocal elastic restraint of component walls of the cross-section and the effect of longitudinal stress variation, which occurs in transversely bent beams, were taken into account.
PL
W profilowanych na zimno przekrojach cienkościennych występują złożone zjawiska związane z wyboczeniem lokalnym i dystorsyjnym smukłych ścianek zawierających krawędziowe odgięcia usztywniające. W celu wyznaczenia nośności obliczeniowej takiego przekroju w zakresie nadkrytycznym należy wyznaczyć naprężenia krytyczne wyboczenia lokalnego dla poszczególnych ścianek. Na tej podstawie wyznacza się odpowiednie szerokości efektywne. W kolejnym kroku uwzględnia się efekt wyboczenia dystorsyjnego, najczęściej poprzez redukcję grubości tzw. zastępczego przekroju usztywnienia. W pracy przedstawiono wzory aproksymacyjne płytowych współczynników wyboczeniowych (k*) służące do obliczania naprężeń krytycznych wyboczenia lokalnego dla technicznie ważnych rozkładów naprężeń. Uwzględniono pełny zakres zmienności wskaźnika sprężystego utwierdzenia krawędzi podłużnej półki przekroju cienkościennego. Współczynniki wyznaczono dla dokładniejszego, w stosunku do Eurokodu 3, modelu obliczeniowego. Uwzględniono zarówno efekt wzajemnego sprężystego zamocowania ścianek składowych przekroju, jak również występujący w poprzecznie zginanych belkach efekt wzdłużnej zmienności naprężeń.
EN
Thin-walled bars currently applied in metal construction engineering belong to a group of members, the cross-section resistance of which is affected by the phenomena of local or distortional stability loss. This results from the fact that the cross-section of such a bar consists of slender-plate elements. The study presents the method of calculating the resistance of the cross-section susceptible to local buckling which is based on the loss of stability of the weakest plate (wall). The "Critical Plate" (CP) was identified by comparing critical stress in cross-section component plates under a given stress condition. Then, the CP showing the lowest critical stress was modelled, depending on boundary conditions, as an internal or cantilever element elastically restrained in the restraining plate (RP). Longitudinal stress distribution was accounted for by means of a constant, linear or non-linear (acc. the second degree parabola) function. For the critical buckling stress, as calculated above, the local critical resistance of the cross-section was determined, which sets a limit on the validity of the Vlasov theory. In order to determine the design ultimate resistance of the cross-section, the effective width theory was applied, while taking into consideration the assumptions specified in the study. The application of the Critical Plate Method (CPM) was presented in the examples. Analytical calculation results were compared with selected experimental findings. lt was demonstrated that taking into consideration the CP elastic restraint and longitudinal stress variation results in a more accurate representation of thin-walled element behaviour in the engineering computational model.
PL
Stosowane obecnie w budownictwie metalowym pręty cienkościenne należą do grupy elementów, których nośność przekroju jest warunkowana zjawiskami lokalnej lub dystorsyjnej utraty stateczności. Przekrój poprzeczny klasy 4. jest na ogół złożony ze smukło – płytowych ścianek, które w analizie można modelować wprost jako płyty. W aktualnie obowiązującej normie europejskiej EC3, zjawiska wyboczenia lokalnego i wyboczenia dystorsyjnego, pomimo różnic w długościach wyboczeniowych, uwzględnia się poprzez redukcję nośności przekroju. Stosuje się tutaj metodę szerokości efektywnej (dla wyboczenia lokalnego) oraz grubości zredukowanej (dla wyboczenia dystorsyjnego). Po uwzględnieniu obu zjawisk, otrzymujemy przekrój efektywny służący do obliczania odpowiednich charakterystyk geometrycznych (np. Aeff, Weff). Natomiast ogólną utratę stateczności pręta uwzględnia się za pomocą współczynnika redukcyjnego obliczanego na podstawie smukłości względnej ogólnej utraty stateczności. W związku z tym, poprawne wyznaczenie naprężeń krytycznych wyboczenia lokalnego (w zakresie sprężystym) nabiera szczególnego znaczenia. Stanowi bowiem podstawę do wyznaczenia: 1) szerokości efektywnych poszczególnych płyt (ścianek), 2) naprężeń krytycznych wyboczenia dystorsyjnego (zastępczy przekrój poprzeczny usztywnienia składa się z odpowiednich szerokości efektywnych), oraz 3) ogólnej smukłości względnej elementu. W normach EC3 dotyczących projektowania elementów cienkościennych (o przekroju klasy 4.) przyjęto koncepcję separacji płyt składowych przekroju przy założeniu ich swobodnego podparcia na podłużnych krawędziach łączenia. Ponadto pominięto, często występujący w praktyce, efekt wzdłużnej zmienności naprężeń. Takie założenia upraszczające odbiegają od rzeczywistego zachowania się elementu cienkościennego pod obciążeniem. Liczne badania doświadczalne oraz symulacje numeryczne (np. MES) wykazują, że w rzeczywistych przekrojach cienkościennych występuje wzajemne sprężyste zamocowanie ścianek składowych. Ponadto, w wielu technicznie ważnych przypadkach, występuje wzdłużna zmienność naprężeń. W pracy przedstawiono metodę obliczeń nośności przekroju cienkościennego wrażliwego na wyboczenie lokalne na podstawie utraty stateczności najsłabszej płyty (ścianki). Punktem wyjścia jest założenie, że w przekroju cienkościennym można wyróżnić ściankę „najsłabszą”, która jest sprężyście zamocowana w sąsiedniej ściance usztywniającej (RP). „Płytą krytyczną” (CP) nazwano tę ściankę kształtownika cienkościennego, która w danym stanie naprężenia charakteryzuje się najniższymi naprężeniami krytycznymi. Założono, że połączenie płyty krytycznej z płytą podpierającą jest sztywne, tzn. na podłużnej krawędzi ich łączenia zachowane są warunki ciągłości przemieszczeń (kątów obrotu) i sił (momentów zginających). Dalej ściankę krytyczną modelowano, w zależności od warunków brzegowych, jako sprężyście zamocowaną przeciw obrotowi płytę przęsłową lub wspornikową. Oznacza to, że naprężenia krytyczne dla płyty krytycznej są wyższe niż przy normowym założeniu jej swobodnego podparcia. Stopień sprężystego zamocowania opisano za pomocą wskaźnika utwierdzenia κ, zmieniającego się od 0 dla swobodnego podparcia, do 1 dla pełnego utwierdzenia. Wskaźnik ten oszacowano w oparciu o założoną postać wymuszonego odkształcenia płyty usztywniającej, przy uwzględnieniu wpływu naprężeń ściskających w jej płaszczyźnie. Współczynniki wyboczeniowe (k) dla tak sprężyście zamocowanych i zmiennie obciążonych na długości płyt krytycznych zamieszczono w cyklu artykułów autora [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. W pracach tych uwzględniono wzdłużny rozkład naprężeń wg funkcji stałej, liniowej lub nieliniowej (wg paraboli 2. stopnia). Dla tak obliczonych naprężeń krytycznych wyznaczono „lokalną” nośność krytyczną przekroju, która ogranicza zakres ważności teorii prętów cienkościennych Własowa (o nieodkształcalnym konturze przekroju). Przekroje, w których (dla określonych proporcji geometrycznych) ścianki ściskane ulegają jednoczesnej utracie stateczności (pod danym rozkładem naprężeń), nazwano przekrojami „zerowymi”. W ich przypadku nie występuje wzajemne sprężyste zamocowanie płyt sąsiednich i spełnione jest normowe założenie separacji przegubowo podpartych płyt składowych przekroju pręta.
PL
W pracy przedstawiono wyniki badań stateczności sprężyście zamocowanych ścianek (płyt) wspornikowych przy wzdłużnej i poprzecznej zmienności naprężeń. Przyjęto liniowy rozkład naprężeń w kierunku szerokości ścianki (płyty) oraz liniowy lub nieliniowy (wg paraboli 2. stopnia) rozkład naprężeń na jej długości. Wyznaczono wykresy współczynników wyboczeniowych (k) dla różnie podpartych i różnie obciążonych płyt wspornikowych, których nie znaleziono w literaturze.
EN
The paper presents results of the investigation into the stability of elastically restrained cantilever walls (plates) with longitudinal and transverse stress variation. A linear distribution of stresses in the direction of the wall (plate) width and the linear or nonlinear (in accordance with parabola 20) distribution of stresses along the wall length were assumed. Plots of plate buckling coefficients (k) for variously supported and variously loaded cantilever plates, which are not found in the literature, were determined.
EN
Buckling of the stiffened flange of a thin-walled member is reduced to the buckling analysis of the cantilever plate, elastically restrained against rotation, with the free edge stiffener, which is susceptible to deflection. Longitudinal stress variation is taken into account using a linear function and a 2nd degree parabola. Deflection functions for the plate and the stiffener, adopted in the study, made it possible to model boundary conditions and different buckling modes at the occurrence of longitudinal stress variation. Graphs of buckling coefficients are determined for different load distributions as a function of the elastic restraint coefficient and geometric details of the stiffener. Exemplary buckling modes are presented.
PL
Współcześnie stosowane elementy cienkościenne o przekroju otwartym charakteryzują się dużymi smukłościami ścianek. W związku z tym są wrażliwe na zjawiska lokalne związane z ich wyboczeniem. Z tego punktu widzenia, krawędź swobodną ściskanej ścianki wspornikowej wzmacnia się często usztywnieniem krawędziowym, powodując wzrost naprężeń krytycznych i zmianę miarodajnej postaci wyboczenia. Usztywniona ścianka wspornikowa jest w większości przypadków sprężyście zamocowana przeciw obrotowi w ściance przęsłowej (np. w środniku kształtownika cienkościennego) i często występuje w niej wzdłużna zmienność naprężeń.
PL
W pracy zagadnienie lokalnej utraty stateczności ściskanej półki, cienkościennego elementu zginanego o niesymetrycznym przekroju, sprowadzono do analizy wyboczenia płyty przęsłowej. Rozważania przeprowadzono dla modelu niesymetrycznie sprężyście zamocowanej „na obrót” płyty przy udziale obciążeń wywołujących zmienność naprężeń w kierunku jej długości. Zaproponowano funkcję ugięcia umożliwiającą modelowanie niesymetrycznych warunków brzegowych na obu krawędziach podłużnych. Wyznaczono wykresy płytowych współczynników wyboczeniowych dla wzajemnie różnych stopni sprężystego zamocowania krawędzi.
EN
The problem of local stability loss of the compressed flange of a bent thin-walled member with unsymmetrical section was reduced to the buckling analysis of a double-sided unsymmetrical elastically restrained “on the rotation” internal plate (Fig.1) with the participation of loads generating stresses variation in the direction of its length. Deflection function was proposed to enable modelling of unsymmetrical boundary conditions on both longitudinal edges. Plots of plate buckling coefficient for mutually different degrees of elastically restrained longitudinal edges are determined.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.