Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  local languages
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We introduce algorithms that, given a finite-state automaton (FSA), compute a minimal set of forbidden local factors that define a Strictly Local (SL) tight approximation of the stringset recognised by the FSA and the set of forbidden piecewise factors that define a Strictly Piecewise (SP) tight approximation of that stringset, as well as a set of co-SL factors that, together with the SL and SP factors, provide a set of purely conjunctive literal constraints defining a minimal superset of the stringset recognised by the automaton. Using these, we have built computational tools that have allowed us to reproduce, by nearly purely computational means, the work of Rogers and his co-workers (Rogers et al. 2012) in which, using a mix of computational and analytical techniques, they completely characterised, with respect to the Local and Piecewise Subregular hierarchies, the constraints on the distribution of stress in human languages that are documented in the StressTyp2 database. Our focus, in this paper, is on the algorithms and the method of their application. The phonology of stress patterns is a particularly good domain of application since, as we show here, they generally fall at the very lowest levels of complexity. We discuss these phonological results here, but do not consider their consequences in depth.
2
Content available remote Morphic Characterizations of Language Families Based on Local and Star Languages
EN
New morphic characterizations in the form of a noted Chomsky-Schützenberger theorem are established for the classes of regular languages, of context-free languages and of languages accepted by chemical reaction automata. Our results include the following: (i) Each λ-free regular language R can be expressed as R = h(Tk ∩ FR) for some 2-star language FR, an extended 2-star language Tk and a weak coding h. (ii) Each λ-free context-free language L can be expressed as L = h(Dn ∩ FL) for some 2-local language FL and a projection h. (iii) A language L is accepted by a chemical reaction automaton iff there exist a 2-local language FL and a weak coding h such that L = h(Bn ∩ FL), where Dn and Bn are a Dyck set and a partially balanced language defined over the n-letter alphabet, respectively. These characterizations improve or shed new light on the previous results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.