Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  liver tumor
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The segmentation of liver and liver tumor is an essential step for computer-aided liver disease diagnosis, treatment and prognosis. Although deep convolutional neural networks have contributed to liver and tumor segmentation, their architectures can not maintain spatial details and long-range context information. Besides, the fixed receptive fields of these networks limit the segmentation performance of livers and tumors with variant sizes and shapes. To address above problems, we propose a deep attention neural network which contains high-resolution branch and multi-scale features aggregation for cascaded liver and tumor segmentation from CT images. To be specific, the high-resolution branch can maintain the resolution of the input image and thus preserves the spatial details. The multi-scale features exchange and fusion enable the receptive fields of the network to adapt to liver and tumor with variant shapes and sizes. The appended attention module evaluates the similarities between every two pixels to model the long-range dependence and context information so that the network can segment liver and tumor areas located in distant regions. Experimental results on the LiTS and the 3D-IRCADb datasets demonstrate that our method can generate satisfying performance.
EN
Thermal ablation surgery serves as one of the main approaches to treat liver tumors. The pretreatment planning, which highly demands the experience and ability of the physician, plays a vital role in thermal ablation surgery. The planning of multiple puncturing is necessary for avoiding the possible interference, destroying the tumor thoroughly and minimizing the damage to healthy tissue. A GPU-independent pretreatment planning method is proposed based on multi-objective optimization, which takes the most comprehensive constraints into consideration. An adaptive decision method of closing kernel size based on Jenks Natural Breaks is utilized to describe the final feasible region more accurately. It should be noted that the reasonable procedure of solving the feasible region and the use of KD tree based high dimensional search approach are used to enhance the computational efficiency. Seven constraints are handled within 7 s without GPU acceleration. The Pareto front points of nine puncturing tests are obtained in 5 s by using the NSGA-II algorithm. To evaluate the maximum difference and similarity between the planning results and the puncturing points recommended by the physician, Hausdorff distance and overlap rate are respectively developed, the Hausdorff distances are within 30 mm in seven out of nine tests and the average value of overlap rate is 73.0% for all the tests. The puncturing paths of high safety and clinical-practice compliance can be provided by the proposed method, based on which the pretreatment planning software developed can apply to the interns' training and ability evaluating for thermal ablation surgery.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.