In the note we present two results. The first of them gives a sufficient condition for a colouring of a hypergraph from an assigned list. It generalises the analogous fact for graphs. The second result states that for every k ≥ 3 and every l ≥ 2, a distance between the list chromatic number and the chromatic number can be arbitrarily large in the class of k-uniform hypergraphs with the chromatic number bounded below by l. A similar result for k-uniform, 2-colorable hypergraphs is known but the proof techniques are different.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.