Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 32

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  linear matrix inequalities
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
This paper presents a novel approach to analyzing the robust stability of interconnected embedded systems. The paper starts by discussing the challenges associated with designing stable and robust embedded systems, particularly in the context of interconnected systems. The proposed approach combines the H∞ control theory with a new model for interconnected embedded systems, which takes into account the effects of communication delays and data losses. The paper provides a detailed mathematical analysis of the new model and presents several theorems and proofs related to its stability. The effectiveness of the proposed approach is demonstrated through several practical examples, including a networked control system and a distributed sensor network. The paper also discusses the limitations of the proposed approach and suggests several directions for future research. The proposed filter design method establishes a sufficient condition for the asymptotic stability of the error system and the satisfaction of a predefined H∞ performance index for time-invariant bounded uncertain parameters. This is achieved through the use of the strict linear matrix inequalities (LMI) approach and projection lemma. The design is formulated in terms of linear matrix inequalities (LMI). Numerical examples are provided to demonstrate the effectiveness of the proposed filter design methods.
EN
New design conditions on the observer based residual filter design for the linear discrete-time linear systems with zoned system parameter faults are presented. With respect to time evolution of residual signals and with a guarantee of their robustness, the design task is stated in terms of linear matrix inequalities, while the recursive implementation of algorithms is motivated by the platform existence for real-time processing. A major objective is to analyze the configuration required and, in particular, a new characterization of the norm boundaries of the multiplicative zonal parametric faults to be projected onto the structure of the set of linear matrix inequalities.
EN
An output-feedback decentralised formation control strategy is pursued under pole-region constraints, assuming that the agents have access to relative position measurements with respect to a set of neighbors in a graph describing the sensing topology. No communication between the agents is assumed; however, a shared one-way communication channel with a pilot is needed for steering tasks. Each agent has a separate copy of the same controller. A virtual structure approach is presented for the formation steering as a whole; actual formation control is established via cone-complementarity linearization algorithms for the appropriate matrix inequalities. In contrast to other research where only stable consensus is pursued, the proposed method allows us to specify settling-time, damping and bandwidth limitations via pole regions. In addition, a full methodology for the decoupled handling of steering and formation control is provided. Simulation results in the example section illustrate the approach.
EN
In this paper we present and discuss a new class of singular fractional systems in a multidimensional state space described by the Roesser continuous-time models. The necessary and sufficient conditions for the asymptotic stability and admissibility by the use of linear matrix inequalities are established. All the obtained results are simulated by some numerical examples to show the applicability and accuracy of our approach.
EN
This paper considers the problem of fault-tolerant control (FTC) and fault reconstruction of actuator faults for linear parameter varying (LPV) descriptor systems with time delay. A polytopic sliding mode observer (PSMO) is synthesized to achieve simultaneous reconstruction of LPV polytopic descriptor system states and actuator faults. Exploiting the reconstructed actuator faults and state estimates, a fault-tolerant controller is designed to compensate the impact of actuator faults on system performance by stabilizing the closed-loop LPV delayed descriptor system. Besides, the controller and PSMO gains are obtained throughout the resolution of linear matrix inequalities (LMIs) using convex optimization techniques. The developed PSMO could force the output estimation error to converge to zero in a finite time when the actuators faults are bounded through the reinjection of the output estimation error via a nonlinear switching term. Simulation results applied to a given numerical system are presented to highlight the superiority and effectiveness of the proposed approach.
EN
This paper develops an innovative approach for designing non-parallel distributed fuzzy controllers for continuous-time non-linear systems under persistent perturbations. Non-linear systems are represented using Takagi–Sugeno fuzzy models. These non-PDC controllers guarantee bounded input bounded output stabilisation in closed-loop throughout the computation of generalised inescapable ellipsoids. These controllers are computed with linear matrix inequalities using fuzzy Lyapunov functions and integral delayed Lyapunov functions. LMI conditions developed in this paper provide non-PDC controllers with a minimum ⋆-norm (upper bound of the 1-norm) for the T–S fuzzy system under persistent perturbations. The results presented in this paper can be classified into two categories: local methods based on fuzzy Lyapunov functions with guaranteed bounds on the first derivatives of membership functions and global methods based on integral-delayed Lyapunov functions which are independent of the first derivatives of membership functions. The benefits of the proposed results are shown through some illustrative examples.
EN
This paper proposes a methodology for observer-based fault estimation of leader-following linear multi-agent systems subject to actuator faults. First, a proportional-integral distributed fault estimation observer is developed to estimate both actuator faults and states of each follower agent by considering directed and undirected graph topologies. Second, based on the proposed quadratic Lyapunov equation, sufficient conditions for the asymptotic convergence of the observer are obtained as a set of linear matrix inequalities. Finally, a numerical example is provided to illustrate the proposed approach.
EN
This paper addresses weighted L2 gain performance switching controller design of discrete-time switched linear systems with average dwell time (ADT) scheme. Two kinds of methods, so called linearizing change-of-variables based method and controller variable elimination method, are considered for the output-feedback control with a supervisor enforcing a reset rule at each switching instant are considered respectively. Furthermore, some comparison between these two methods are also given.
9
EN
The paper addresses the problem of constrained pole placement in discrete-time linear systems. The design conditions are outlined in terms of linear matrix in equalities for the D-stable ellipse region in the complex Z plain. In addition, it is demonstrated that the D-stable circle region formulation is the special case of by this way formulated and solved pole placement problem. The proposed principle is enhanced for discrete-time linear systems with polytopic uncertainties.
EN
This paper presents a novel approach to the design of fuzzy state feedback controllers for continuous-time non-linear systems with input saturation under persistent perturbations. It is assumed that all the states of the Takagi–Sugeno (TS) fuzzy model representing a non-linear system are measurable. Such controllers achieve bounded input bounded output (BIBO) stabilisation in closed loop based on the computation of inescapable ellipsoids. These ellipsoids are computed with linear matrix inequalities (LMIs) that guarantee stabilisation with input saturation and persistent perturbations. In particular, two kinds of inescapable ellipsoids are computed when solving a multiobjective optimization problem: the maximum volume inescapable ellipsoids contained inside the validity domain of the TS fuzzy model and the smallest inescapable ellipsoids which guarantee a minimum *-norm (upper bound of the 1-norm) of the perturbed system. For every initial point contained in the maximum volume ellipsoid, the closed loop will enter the minimum *-norm ellipsoid after a finite time, and it will remain inside afterwards. Consequently, the designed controllers have a large domain of validity and ensure a small value for the 1-norm of closed loop.
PL
Referat zawiera metodykę doboru parametrów regulatora stanu z wykorzystaniem liniowych nierówności macierzowych (ang. LMI - Linear Matrix Inequalities) metodą lokowania biegunów. W pracy zdefiniowano warunki rozmieszczenia biegunów w lewej półpłaszczyźnie zmiennej zespolonej s i wyznaczono obszary dopuszczalnych położeń biegunów. Na potrzeby rozważanej, liniowej metody projektowania dokonano linearyzacji modelu matematycznego obiektu w wybranym punkcie pracy. Zaprojektowany regulator stanu zastosowany został do sterowania obiektem rzeczywistym, którym był układ kaskadowy dwóch zbiorników. W referacie przedstawione zostały zarówno wyniki badań symulacyjnych jak i badań eksperymentalnych przeprowadzonych na obiekcie rzeczywistym.
EN
The paper describes a state feedback controller design by pole placement method using Linear Matrix Inequalities (LMI) approach. Conditions of pole placement constraints in a left half plane of the complex plane s are defined and allowable region for poles of the closed-loop control system are determined. For the purpose of using the linear design method, the mathematical model of controlled plant was linearized at a selected operating point. The designed state feedback controller was used for controlling the water level in a two-tank cascade system. The paper presents results of both computer simulations and real-time experiments.
PL
Artykuł opiera się na kilku znaczących pozycjach w literaturze przedmiotu związanych z liniowymi nierównościami macierzowymi i ich zastosowaniem do syntezy okrętowych układów sterowania. Pierwsza część artykułu nawiązuje do liniowych nierówności macierzowych. Druga część poświęcona jest opisowi dwóch publikacji, zawierających zastosowanie liniowych nierówności macierzowych wdrożonych do zastosowań morskich na rzeczywistych obiektach. W podsumowaniu przedstawiono zalety i wady proponowanej metody numerycznej.
EN
The paper is a short review of publications about the use of linear matrix inequalities for synthesis of marine controlled object models. The first part is a short description of linear matrix inequalities. The second part presents two publications where linear matrix inequalities were implemented in marine industry. The summary describes advantages and disadvantages of the proposed numerical method.
13
Content available Stabilization of discrete-time LTI positive systems
EN
The paper mitigates the existing conditions reported in the previous literature for control design of discrete-time linear positive systems. Incorporating an associated structure of linear matrix inequalities, combined with the Lyapunov inequality guaranteing asymptotic stability of discrete-time positive system structures, new conditions are presented with which the state-feedback controllers and the system state observers can be designed. Associated solutions of the proposed design conditions are illustrated by numerical illustrative examples.
EN
Bidirectional Inductive power transfer (IPT) systems behave as high order resonant networks and hence are highly sensitive to changes in system parameters. Traditional PID controllers often fail to maintain satisfactory power regulation in the presence of parametric uncertainties. To overcome these problems, this paper proposes a robust controller which is designed using linear matrix inequality (LMI) techniques. The output sensitivity to parametric uncertainty is explored and a linear fractional transformation of the nominal model and its uncertainty is discussed to generate a standard configuration for μ-synthesis and LMI analysis. An H∞ controller is designed based on the structured singular value and LMI feasibility analysis with regard to uncertainties in the primary tuning capacitance, the primary and pickup inductors and the mutual inductance. Robust stability and robust performance of the system is studied through μ-synthesis and LMI feasibility analysis. Simulations and experiments are conducted to verify the power regulation performance of the proposed controller.
EN
The H∞ norm approach to virtual actuators design, intended to Takagi-Sugeno fuzzy continuous-time systems, is presented in the paper. Using the second Ljapunov method, the design conditions are formulated in terms of linear matrix inequalities in adapted bounded real lemma structures. Related to the static output controller, and for systems under influence of single actuator faults, the design steps are revealed for a three-tank system plant.
EN
The paper provides the minimal necessary modifications of linear matrix inequality conditions for the mixed H2/H∞ control design as well as for the augmented observer-based fault estimation to be mutually compatible in joint design of integrated fault estimation and fault tolerant control. To be possible, within this integration, to design the controller which guarantees a pre-specified H∞ norm disturbance attenuation level, the design conditions has to be regularized using the H2 performance index and, moreover, augmented fault observer must be of enforced dynamics. Analyzing the ambit of performances given on the mixed H2/H∞ design, the joint design conditions are formulated as a minimization problem subject to convex constraints expressed by a system of LMIs. The feasibility of the conditions is demonstrated by a numerical example.
EN
A solution for fault tolerant control (FTC) of a quadrotor unmanned aerial vehicle (UAV) is proposed. It relies on model reference-based control, where a reference model generates the desired trajectory. Depending on the type of reference model used for generating the reference trajectory, and on the assumptions about the availability and uncertainty of fault estimation, different error models are obtained. These error models are suitable for passive FTC, active FTC and hybrid FTC, the latter being able to merge the benefits of active and passive FTC while reducing their respective drawbacks. The controller is generated using results from the robust linear parameter varying (LPV) polytopic framework, where the vector of varying parameters is used to schedule between uncertain linear time invariant (LTI) systems. The design procedure relies on solving a set of linear matrix inequalities (LMIs) in order to achieve regional pole placement and H∞ norm bounding constraints. Simulation results are used to compare the different FTC strategies.
EN
In this paper, integral sliding mode control ideas are combined with direct control allocation in order to create a fault tolerant control scheme. Traditional integral sliding mode control can directly handle actuator faults; however, it cannot do so with actuator failures. Therefore, a mechanism needs to be adopted to distribute the control effort amongst the remaining functioning actuators in cases of faults or failures, so that an acceptable level of closed-loop performance can be retained. This paper considers the possibility of introducing fault tolerance even if fault or failure information is not provided to the control strategy. To demonstrate the efficacy of the proposed scheme, a high fidelity nonlinear model of a large civil aircraft is considered in the simulations in the presence of wind, gusts and sensor noise.
EN
Stability analysis and design for continuous-time proportional plus derivative state observers is presented in the paper with the goal to establish the system state and actuator fault estimation. Design problem accounts a descriptor principle formulation for non-descriptor systems, guaranteing asymptotic convergence both the state observer error as fault estimate error. Presented in the sense of the second Lyapunov method, an associated structure of linear matrix inequalities is outlined to possess parameter existence of the proposed estimator structure. The obtained design conditions are verified by simulation using a numerical illustrative example.
PL
Artykuł zawiera opis stanowiska badawczego, znajdującego się w laboratorium Akademii Morskiej w Gdyni, które wykorzystuje platformę czasu rzeczywistego xPC Target ze środowiska Matlab wersja 2011b. We wstępie scharakteryzowano model obiektu zastosowanego w stanowisku badawczym, jakim jest model statku „Blue Lady”. W drugim rozdziale przedstawiono krótki opis pakietu xPC Target. Kolejne kroki, związane z konfiguracją sprzętu i oprogramowania stanowiska badawczego, opisano w rozdziale 3. Natomiast ostatni rozdział przedstawia syntezę regulatora LMI (Linear Matrix Inequalities) oraz wyniki symulacji przeprowadzonych na komputerze w narzędziu symulacyjnym pakietu Matlab, tj. w Simulinku, porównane z wynikami przeprowadzonymi na stanowisku badawczym w czasie rzeczywistym.
EN
This article is a description of a lab station in Maritime Academy in Gdynia which uses a real time platform, the xPC Target from Matlab 2011b software in 64-bit version. Preface describes, in general, the lab station where the controlled system is a “Blue Lady” ship model. First chapter contains a short description of the xPC Target software. Second chapter shows steps required to configure hardware and software of the lab station. Third and final chapter is the LMI (Linear Matrix Inequalities) controller synthesis and simulation results, where results obtained from a computer simulation using Matlab’s simulation tool Simulink are compared with results obtained from the real time lab station.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.