Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  lightweight expanded clay aggregate
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The objective of this experimental study was to examine whether an assisting layer of lightweight expanded clay aggregate (LECA) of the granulation 1-4 mm, introduced into a subsoil, is able to improve an efficiency of removal of total nitrogen and total phosphorus from domestic wastewater. In the investigations, an assisting 0.10 and 0.20 m thick LECA layer was applied. It has been observed that the effectiveness of removal of total suspended solids (TSS), total nitrogen and total phosphorus from wastewater as well as the level of biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) is in accordance with the Polish standards on wastewater disposal into grounds and surface water. The performed experiments showed that the effectiveness of raw wastewater purification for the medium sand soil bed with the 0.20 m thick assisting LECA layer is higher than for the 0.10 m thick assisting layer. In the medium sand soil bed with the 0.20 m thick assisting LECA layer, the removal efficiency regarding total nitrogen increased by 20.6%, total phosphorus by 5.2%, ammonium nitrogen by 8.8% and TSS by 5.3%, and reduction efficiency regarding BOD5 increased by 1.7% and COD by 2.3% with relation to the 0.10 m thick assisting LECA layer (all percentages - in average). The results of the experiment showed that the LECA with the granulation 1-4 mm can be used to assist in removal of total nitrogen and total phosphorus from wastewater with application of infiltration drainage.
EN
The construction activities are based on structural concrete, which is one of the most commonly used materials. The fundamental aim of using lightweight concrete (LWC) was to reduce the concrete self-weight of the structure parts. As a result, LWC has been used successfully in a variety of installations for several years. In this paper, the mechanical properties of concrete made with lightweight expanded clay aggregate (LECA) as a full replacement for coarse aggregate are studied. The experimental program shows that LECA with a 32 MPa cube compressive strength and an 1,823 kg×m–3 dry density can be used to make structural light-weight aggregate concrete (SLWC). The results show that the reduction in the strength of lightweight aggregate concrete (LWAC) was found to be higher in the concrete with an estimated compressive strength of 32 MPa due to the lower strength of the LWA (expanded clay). According to the test results, the mechanical properties of LWC were greatly improved by adding silica fume (SF). Furthermore, LECA concrete has a splitting tensile strength that is 47% higher than the ASTM C330/C330M-17A minimum requirement. The LECA concrete has a splitting tensile strength to compressive strength ratio of approximately 13%. Additionally, the results demonstrate a 27% difference in the modulus of elasticity between the calculated and tested values.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.